Advertisement

Chiral three-nucleon forces and bound excited states in neutron-rich oxygen isotopes

  • J. D. Holt
  • J. Menéndez
  • A. SchwenkEmail author
Open Access
Letter

Abstract

We study the spectra of neutron-rich oxygen isotopes based on chiral two- and three-nucleon interactions. First, we benchmark our many-body approach by comparing ground-state energies to coupled-cluster results for the same two-nucleon interaction, with overall good agreement. We then calculate bound excited states in 21, 22, 23O , focusing on the role of three-nucleon forces, in the standard sd shell and an extended \( sdf_{7/2}p_{3/2}\) valence space. Chiral three-nucleon forces provide important one- and two-body contributions between valence neutrons. We find that both these contributions and an extended valence space are necessary to reproduce key signatures of novel shell evolution, such as the N = 14 magic number and the low-lying states in 21O and 23O , which are too compressed with two-nucleon interactions only. For the extended space calculations, this presents first work based on nuclear forces without adjustments. Future work is needed and open questions are discussed.

Keywords

Oxygen Isotope Magic Number Valence Neutron Valence Space Empirical SPEs 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    M. Thoennessen, Rep. Prog. Phys. 67, 1187 (2004)ADSCrossRefGoogle Scholar
  2. 2.
    C.R. Hoffman et al., Phys. Rev. Lett. 100, 152502 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    R. Kanungo et al., Phys. Rev. Lett. 102, 152501 (2009)ADSCrossRefGoogle Scholar
  4. 4.
    M. Stanoiu et al., Phys. Rev. C 69, 034312 (2004)ADSCrossRefGoogle Scholar
  5. 5.
    D. Cortina-Gil et al., Phys. Rev. Lett. 93, 062501 (2004)ADSCrossRefGoogle Scholar
  6. 6.
    D. Cortina-Gil et al., Eur. Phys. J. A 25, 343 (2005)CrossRefGoogle Scholar
  7. 7.
    Z. Elekes et al., Phys. Rev. Lett. 98, 102502 (2007)ADSCrossRefGoogle Scholar
  8. 8.
    A. Schiller et al., Phys. Rev. Lett. 99, 112501 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    C.R. Hoffman et al., Phys. Rev. C 83, 031303(R) (2011)ADSCrossRefGoogle Scholar
  10. 10.
    B. Fernández-Domínguez et al., Phys. Rev. C 84, 011301(R) (2011)ADSGoogle Scholar
  11. 11.
    T. Otsuka et al., Phys. Rev. Lett. 87, 082502 (2001)ADSCrossRefGoogle Scholar
  12. 12.
    T. Otsuka et al., Phys. Rev. Lett. 105, 032501 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    G. Hagen et al., Phys. Rev. C 80, 021306(R) (2009)ADSCrossRefGoogle Scholar
  14. 14.
    G. Hagen et al., Phys. Rev. Lett. 108, 242501 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    K. Tsukiyama, M. Hjorth-Jensen, G. Hagen, Phys. Rev. C 80, 051301(R) (2009) K. Tsukiyama, T. Otsuka, R. Fujimoto, arXiv:1001.0729 ADSCrossRefGoogle Scholar
  16. 16.
    O. Jensen et al., Phys. Rev. C 83, 021305(R) (2011)ADSCrossRefGoogle Scholar
  17. 17.
    B.A. Brown, W.A. Richter, Phys. Rev. C 74, 034315 (2006)ADSCrossRefGoogle Scholar
  18. 18.
    Y. Utsuno et al., Phys. Rev. C 60, 054315 (1999)ADSCrossRefGoogle Scholar
  19. 19.
    F. Nowacki, A. Poves, Phys. Rev. C 79, 014310 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    A.P. Zuker, Phys. Rev. Lett. 90, 042502 (2003)ADSCrossRefGoogle Scholar
  21. 21.
    A. Schwenk, J.D. Holt, AIP Conf. Proc. 1011, 159 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    J.D. Holt et al., J. Phys. G 39, 085111 (2012)MathSciNetADSCrossRefGoogle Scholar
  23. 23.
    J. Fujita, H. Miyazawa, Prog. Theor. Phys. 17, 360 (1957)MathSciNetADSzbMATHCrossRefGoogle Scholar
  24. 24.
    E. Epelbaum, H.-W. Hammer, U.-G. Meißner, Rev. Mod. Phys. 81, 1773 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    S.K. Bogner et al., Nucl. Phys. A 763, 59 (2005)ADSCrossRefGoogle Scholar
  26. 26.
    K. Hebeler et al., Phys. Rev. C 83, 031301(R) (2011))ADSCrossRefGoogle Scholar
  27. 27.
    J.W. Holt, N. Kaiser, W. Weise, Phys. Rev. C 81, 024002 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    K. Hebeler, A. Schwenk, Phys. Rev. C 82, 014314 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    T. Lesinski et al., J. Phys. G 39, 015108 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    A.T. Gallant et al., Phys. Rev. Lett. 109, 032506 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    S.K. Bogner et al., Nucl. Phys. A 784, 79 (2007)ADSCrossRefGoogle Scholar
  32. 32.
    S.K. Bogner et al., Prog. Part. Nucl. Phys. 65, 94 (2010)ADSCrossRefGoogle Scholar
  33. 33.
    D.R. Entem, R. Machleidt, Phys. Rev. C 68, 041001(R) (2003)ADSCrossRefGoogle Scholar
  34. 34.
    T.T.S. Kuo, E. Osnes, Lect. Notes Phys. 364, 1 (1990)MathSciNetADSCrossRefGoogle Scholar
  35. 35.
    M. Hjorth-Jensen, T.T.S. Kuo, E. Osnes, Phys. Rep. 261, 125 (1995)ADSCrossRefGoogle Scholar
  36. 36.
    G. Audi, A.H. Wapstra, C. Thibault, Nucl. Phys. A 729, 337 (2003)ADSCrossRefGoogle Scholar
  37. 37.
    G. Hagen et al., Phys. Rev. C 82, 034330 (2010)ADSCrossRefGoogle Scholar
  38. 38.
    G. Hagen et al., Phys. Rev. C 76, 034302 (2007)ADSCrossRefGoogle Scholar
  39. 39.
    B. Friman, A. Schwenk, in From Nuclei to Stars: Festschrift in Honor of Gerald E. Brown, edited by S. Lee (World Scientific, 2011) arXiv:1101.4858
  40. 40.
    U. van Kolck, Phys. Rev. C 49, 2932 (1994)ADSCrossRefGoogle Scholar
  41. 41.
    E. Epelbaum et al., Phys. Rev. C 66, 064001 (2002)ADSCrossRefGoogle Scholar
  42. 42.
    S.K. Bogner, arXiv:0903.3366
  43. 43.
    D.J. Dean et al., Phys. Rev. C 59, 2474 (1999)ADSCrossRefGoogle Scholar
  44. 44.
    E. Caurier, J. Menéndez, F. Nowacki, A. Poves, Phys. Rev. C 75, 054317 (2007)ADSCrossRefGoogle Scholar
  45. 45.
    J.B. McGrory, B.H. Wildenthal, Phys. Lett. B 60, 5 (1975)ADSCrossRefGoogle Scholar
  46. 46.
    G. Hagen, T. Papenbrock, D.J. Dean, Phys. Rev. Lett. 103, 062503 (2009)ADSCrossRefGoogle Scholar
  47. 47.
    S. Okubo, Prog. Theor. Phys. 12, 603 (1954)MathSciNetADSzbMATHCrossRefGoogle Scholar
  48. 48.
    S.Y. Lee, K. Suzuki, Phys. Lett. B 91, 173 (1980)ADSCrossRefGoogle Scholar
  49. 49.
    K. Suzuki, S.Y. Lee, Prog. Theor. Phys. 64, 2091 (1980)ADSCrossRefGoogle Scholar
  50. 50.
    K. Suzuki, R. Okamoto, Prog. Theor. Phys. 70, 439 (1983)ADSCrossRefGoogle Scholar
  51. 51.
    K. Tsukiyama, S.K. Bogner, A. Schwenk, Phys. Rev. Lett. 106, 222502 (2011)ADSCrossRefGoogle Scholar
  52. 52.
    K. Tsukiyama, S.K. Bogner, A. Schwenk, Phys. Rev. C 85, 061304 (2012)ADSCrossRefGoogle Scholar
  53. 53.
    E. Caurier, F. Nowacki, Acta. Phys. Pol. 30, 705 (1999)ADSGoogle Scholar
  54. 54.
    E. Caurier, G. Martínez-Pinedo, F. Nowacki, A. Poves, A.P. Zuker, Rev. Mod. Phys. 77, 427 (2005)ADSCrossRefGoogle Scholar
  55. 55.
    N. Michel et al., J. Phys. G 37, 064042 (2010)ADSCrossRefGoogle Scholar
  56. 56.
    A.F. Lisetskiy et al., Phys. Rev. C 78, 044302 (2008)ADSCrossRefGoogle Scholar
  57. 57.
    G.R. Jansen et al., Phys. Rev. C 83, 054306 (2011)ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2013

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUniversity of TennesseeKnoxvilleUSA
  2. 2.Physics DivisionOak Ridge National LaboratoryOak RidgeUSA
  3. 3.Institut für KernphysikTechnische Universität DarmstadtDarmstadtGermany
  4. 4.ExtreMe Matter Institute EMMIGSI Helmholtzzentrum für Schwerionenforschung GmbHDarmstadtGermany

Personalised recommendations