Advertisement

Neutron-induced background by an α-beam incident on a deuterium gas target and its implications for the study of the 2H(α,γ)6Li reaction at LUNA

  • M. Anders
  • D. Trezzi
  • A. Bellini
  • M. Aliotta
  • D. Bemmerer
  • C. Broggini
  • A. Caciolli
  • H. Costantini
  • P. Corvisiero
  • T. Davinson
  • Z. Elekes
  • M. Erhard
  • A. Formicola
  • Zs. Fülöp
  • G. Gervino
  • A. Guglielmetti
  • C. GustavinoEmail author
  • Gy. Gyürky
  • M. Junker
  • A. Lemut
  • M. Marta
  • C. Mazzocchi
  • R. Menegazzo
  • P. Prati
  • C. Rossi Alvarez
  • D. Scott
  • E. Somorjai
  • O. Straniero
  • T. Szücs
  • LUNA Collaboration
Regular Article - Experimental Physics

Abstract.

The production of the stable isotope 6Li in standard Big Bang nucleosynthesis has recently attracted much interest. Recent observations in metal-poor stars suggest that a cosmological 6Li plateau may exist. If true, this plateau would come in addition to the well-known Spite plateau of 7Li abundances and would point to a predominantly primordial origin of 6Li , contrary to the results of standard Big Bang nucleosynthesis calculations. Therefore, the nuclear physics underlying Big Bang 6Li production must be revisited. The main production channel for 6Li in the Big Bang is the 2H(α,γ)6Li reaction. The present work reports on neutron-induced effects in a high-purity germanium detector that were encountered in a new study of this reaction. In the experiment, an α-beam from the underground accelerator LUNA in Gran Sasso, Italy, and a windowless deuterium gas target are used. A low neutron flux is induced by energetic deuterons from elastic scattering and, subsequently, the 2H(d,n)3He reaction. Due to the ultra-low laboratory neutron background at LUNA, the effect of this weak flux of 2-3MeV neutrons on well-shielded high-purity germanium detectors has been studied in detail. Data have been taken at 280 and 400keV α-beam energy and for comparison also using an americium-beryllium neutron source.

Keywords

Germanium Detector Target Chamber GEANT4 Simulation Compton Continuum Energetic Neutron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    B.D. Fields, Annu. Rev. Nucl. Part. Sci. 61, 47 (2011)ADSCrossRefGoogle Scholar
  2. 2.
    A.J. Korn et al., Nature 442, 657 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    M. Asplund, D.L. Lambert, P.E. Nissen, F. Primas, V.V. Smith, Astrophys. J. 644, 229 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    A.E. García Pérez et al., Astron. Astrophys. 504, 213 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    M. Steffen, R. Cayrel, P. Bonifacio, H. Ludwig, E. Caffau, Convection and 6Li in the atmospheres of metal-poor halo stars, in IAU Symposium, Vol. 268 (2010) pp. 215-220, 1001.3274Google Scholar
  6. 6.
    V.V. Smith, D.L. Lambert, P.E. Nissen, Astrophys. J. 408, 262 (1993)ADSCrossRefGoogle Scholar
  7. 7.
    M. Steffen et al., Mem. Soc. Astron. Ital. Suppl. 22, 152 (2012)ADSGoogle Scholar
  8. 8.
    P.D. Serpico et al., JCAP 12, 010 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    N. Prantzos, Astron. Astrophys. 448, 665 (2006)ADSCrossRefGoogle Scholar
  10. 10.
    F. Iocco, M. Pato, Phys. Rev. Lett. 109, 021102 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    M. Kusakabe, T. Kajino, G.J. Mathews, Phys. Rev. D 74, 023526 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    M. Pospelov, Phys. Rev. Lett. 98, 231301 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    K. Jedamzik, M. Pospelov, New J. Phys. 11, 105028 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    M. Pospelov, J. Pradler, Annu. Rev. Nucl. Part. Sci. 60, 539 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    L. Marcucci, K. Nollett, R. Schiavilla, R. Wiringa, Nucl. Phys. A 777, 111 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    F. Hammache et al., Phys. Rev. C 82, 065803 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    A.M. Mukhamedzhanov, L.D. Blokhintsev, B.F. Irgaziev, Phys. Rev. C 83, 055805 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    C. Rolfs, W. Rodney, Cauldrons in the Cosmos (University of Chicago Press, Chicago, 1988)Google Scholar
  19. 19.
    P. Mohr et al., Phys. Rev. C 50, 1543 (1994)ADSCrossRefGoogle Scholar
  20. 20.
    R.G.H. Robertson et al., Phys. Rev. Lett. 47, 1867 (1981)ADSCrossRefGoogle Scholar
  21. 21.
    F.E. Cecil, J. Yan, C.S. Galovich, Phys. Rev. C 53, 1967 (1996)ADSCrossRefGoogle Scholar
  22. 22.
    J. Kiener et al., Phys. Rev. C 44, 2195 (1991)ADSCrossRefGoogle Scholar
  23. 23.
    J.M. Blatt, V.F. Weisskopf, Theoretical Nuclear Physics (Dover Publications, New York, 1991)Google Scholar
  24. 24.
    G. Baur, H. Rebel, Annu. Rev. Nucl. Part. Sci. 46, 321 (1996)ADSCrossRefGoogle Scholar
  25. 25.
    H. Costantini et al., Rep. Prog. Phys. 72, 086301 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    C. Broggini, D. Bemmerer, A. Guglielmetti, R. Menegazzo, Annu. Rev. Nucl. Part. Sci. 60, 53 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    D.S. Leonard, H.J. Karwowski, C.R. Brune, B.M. Fisher, E.J. Ludwig, Phys. Rev. C 73, 045801 (2006)ADSCrossRefGoogle Scholar
  28. 28.
    C. Chasman, K.W. Jones, R.A. Ristinen, Nucl. Instrum. Methods 37, 1 (1965)ADSCrossRefGoogle Scholar
  29. 29.
    R. Bunting, J.J. Kraushaar, Nucl. Instrum. Methods 118, 565 (1974)ADSCrossRefGoogle Scholar
  30. 30.
    G. Fehrenbacher, R. Meckbach, H.G. Paretzke, Nucl. Instrum. Methods A 372, 239 (1996)ADSCrossRefGoogle Scholar
  31. 31.
    G. Fehrenbacher, R. Meckbach, H.G. Paretzke, Nucl. Instrum. Methods A 397, 391 (1997)ADSCrossRefGoogle Scholar
  32. 32.
    J. Ljungvall, J. Nyberg, Nucl. Instrum. Methods A 546, 553 (2005)ADSCrossRefGoogle Scholar
  33. 33.
    A. Ataç et al., Nucl. Instrum. Methods A 607, 554 (2009)ADSCrossRefGoogle Scholar
  34. 34.
    I. Abt et al., Eur. Phys. J. A 36, 139 (2008)ADSCrossRefGoogle Scholar
  35. 35.
    D.-M. Mei, S. Elliott, A. Hime, V. Gehman, K. Kazkaz, Phys. Rev. C 77, 054614 (2008)ADSCrossRefGoogle Scholar
  36. 36.
    G. Heusser, Nucl. Instrum. Methods B 83, 223 (1993)ADSCrossRefGoogle Scholar
  37. 37.
    G. Heusser, Annu. Rev. Nucl. Part. Sci. 45, 543 (1995)ADSCrossRefGoogle Scholar
  38. 38.
    R. Wordel et al., Nucl. Instrum. Methods A 369, 557 (1996)ADSCrossRefGoogle Scholar
  39. 39.
    S.P. Ahlen et al., Phys. Lett. B 249, 149 (1990)ADSCrossRefGoogle Scholar
  40. 40.
    P. Belli et al., Nuovo Cimento A 101, 959 (1989)ADSCrossRefGoogle Scholar
  41. 41.
    F. Arneodo et al., Nuovo Cimento A 112, 819 (1999)ADSGoogle Scholar
  42. 42.
    D. Bemmerer et al., Eur. Phys. J. A 24, 313 (2005)ADSCrossRefGoogle Scholar
  43. 43.
    A. Caciolli et al., Eur. Phys. J. A 39, 179 (2009)ADSCrossRefGoogle Scholar
  44. 44.
    T. Szücs et al., Eur. Phys. J. A 44, 513 (2010)ADSCrossRefGoogle Scholar
  45. 45.
    A. Formicola et al., Nucl. Instrum. Methods A 507, 609 (2003)ADSCrossRefGoogle Scholar
  46. 46.
    C. Casella et al., Nucl. Instrum. Methods A 489, 160 (2002)ADSCrossRefGoogle Scholar
  47. 47.
    G. Gyürky et al., Phys. Rev. C 75, 035805 (2007)ADSCrossRefGoogle Scholar
  48. 48.
    J. Görres, K. Kettner, H. Kräwinkel, C. Rolfs, Nucl. Instrum. Methods 177, 295 (1980)ADSCrossRefGoogle Scholar
  49. 49.
    M. Marta et al., Nucl. Instrum. Methods A 569, 727 (2006)ADSCrossRefGoogle Scholar
  50. 50.
    J. Osborne et al., Nucl. Phys. A 419, 115 (1984)ADSCrossRefGoogle Scholar
  51. 51.
    C. Arpesella et al., Nucl. Instrum. Methods A 360, 607 (1995)ADSCrossRefGoogle Scholar
  52. 52.
    S. Agostinelli et al., Nucl. Instrum. Methods A 506, 250 (2003)ADSCrossRefGoogle Scholar
  53. 53.
    J.K. Dickens, Nucl. Phys. A 401, 189 (1983)ADSCrossRefGoogle Scholar
  54. 54.
    J.K. Dickens, Phys. Rev. C 28, 916 (1983)ADSCrossRefGoogle Scholar
  55. 55.
    M. Kadi et al., Phys. Rev. C 61, 034307 (2000)ADSCrossRefGoogle Scholar
  56. 56.
    J. Lachkar, J. Sigaud, Y. Patin, G. Haouat, Nucl. Phys. A 222, 333 (1974)ADSCrossRefGoogle Scholar
  57. 57.
    J.K. Dickens, Nucl. Sci. Eng. 50, 311 (1973)Google Scholar
  58. 58.
    P. Karatzas et al., Nucl. Sci. Eng. 67, 34 (1978)Google Scholar
  59. 59.
    Evaluated Nuclear Structure Data File (ENSDF), International Atomic Energy Agency, http://www-nds.iaea.org/queryensdf

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • M. Anders
    • 1
  • D. Trezzi
    • 2
  • A. Bellini
    • 3
  • M. Aliotta
    • 4
  • D. Bemmerer
    • 1
  • C. Broggini
    • 5
  • A. Caciolli
    • 5
  • H. Costantini
    • 3
  • P. Corvisiero
    • 3
  • T. Davinson
    • 4
  • Z. Elekes
    • 1
  • M. Erhard
    • 5
  • A. Formicola
    • 6
  • Zs. Fülöp
    • 7
  • G. Gervino
    • 8
  • A. Guglielmetti
    • 9
    • 2
  • C. Gustavino
    • 10
  • Gy. Gyürky
    • 7
  • M. Junker
    • 6
  • A. Lemut
    • 3
  • M. Marta
    • 1
  • C. Mazzocchi
    • 2
  • R. Menegazzo
    • 5
  • P. Prati
    • 3
  • C. Rossi Alvarez
    • 5
  • D. Scott
    • 4
  • E. Somorjai
    • 7
  • O. Straniero
    • 11
    • 12
  • T. Szücs
    • 7
  • LUNA Collaboration
  1. 1.Helmholtz-Zentrum Dresden-Rossendorf (HZDR)DresdenGermany
  2. 2.INFN, Sezione di MilanoMilanoItaly
  3. 3.Dipartimento di FisicaUniversità di Genova, and INFN, Sezione di GenovaGenovaItaly
  4. 4.SUPA, School of Physics and AstronomyUniversity of EdinburghEdinburghUK
  5. 5.INFN, Sezione di PadovaPadovaItaly
  6. 6.INFNLaboratori Nazionali del Gran SassoAssergiItaly
  7. 7.Institute of Nuclear Research (ATOMKI)DebrecenHungary
  8. 8.Dipartimento di Fisica SperimentaleUniversità di Torino, and INFNTorinoItaly
  9. 9.Università degli Studi di MilanoMilanoItaly
  10. 10.INFN, Sezione di Roma “La Sapienza”RomaItaly
  11. 11.INFN, Sezione di NapoliNapoliItaly
  12. 12.Osservatorio Astronomico di ColluraniaTeramoItaly

Personalised recommendations