Technical design report for the \(\overline{P}\)ANDA (AntiProton Annihilations at Darmstadt) Straw Tube Tracker

Strong interaction studies with antiprotons

Abstract

This document describes the technical layout and the expected performance of the Straw Tube Tracker (STT), the main tracking detector of the \(\overline{P}\)ANDA target spectrometer. The STT encloses a Micro-Vertex-Detector (MVD) for the inner tracking and is followed in beam direction by a set of GEM stations. The tasks of the STT are the measurement of the particle momentum from the reconstructed trajectory and the measurement of the specific energy loss for a particle identification. Dedicated simulations with full analysis studies of certain proton-antiproton reactions, identified as being benchmark tests for the whole \(\overline{P}\)ANDA scientific program, have been performed to test the STT layout and performance. The results are presented, and the time lines to construct the STT are described.

References

  1. 1

    Collaboration, letter of intent for - Strong Interaction Studies with Antiprotons, Technical report FAIR-ESAC (2004)

  2. 2

    GSI Helmholtzzentrum für Schwerionenforschung, FAIR - An International Accelerator Facility for Beams of Ions and Antiprotons, Baseline technical report (2006) http://www.gsi.de/fair/reports/btr.html

  3. 3

    Technical report, http://www.fair-center.de/fileadmin/fair/publications_FAIR/FAIR_GreenPaper_2009.pdf

  4. 4

    P. Spiller, G. Franchetti, Nucl. Instrum. Methods A 561, 305 (2006)

    ADS  Article  Google Scholar 

  5. 5

    W.F. Henning, Nucl. Instrum. Methods A 805, 502c (2008)

    Google Scholar 

  6. 6

    Collaboration, Physics Performance Report (2009) arXiv:0903.3905v1

  7. 7

    FAIR Technical Design Report, HESR, Technical report, Gesellschaft für Schwerionenforschung (GSI) Darmstadt (2008) http://www-win.gsi.de/FAIR-EOI/PDF/TDR_PDF/TDR_HESR-TRV3.1.2.pdf

  8. 8

    A. Lehrach et al., Int. J. Mod. Phys. E 18, 420 (2009)

    ADS  Article  Google Scholar 

  9. 9

    B. Gålnander et al., Proc. EPAC08, Genoa, Italy THPP049, 3473 (2008)

    Google Scholar 

  10. 10

    H. Stockhorst, D. Prasuhn, R. Maier, B. Lorentz, AIP Conf. Proc. 821, 190 (2006)

    ADS  Article  Google Scholar 

  11. 11

    B. Lorentz et al., Proc. EPAC08, Genoa, Italy MOPPC112, 325 (2008)

    Google Scholar 

  12. 12

    D. Welsch et al., Proc. EPAC08, Genoa, Italy THPC076, 3161 (2008)

    Google Scholar 

  13. 13

    A. Lehrach et al., Nucl. Instrum. Methods A 561, 289 (2006)

    ADS  Article  Google Scholar 

  14. 14

    F. Hinterberger, in Beam-Target Interaction and Intra-beam Scattering in the HESR Ring, Report of the Forschungszentrum Jülich (2006) Jül-4206, ISSN 0944-2952

  15. 15

    O. Boine-Frankenheim, R. Hasse, F. Hinterberger, A. Lehrach, P. Zenkevich, Nucl. Instrum. Methods A 560, 245 (2006)

    ADS  Article  Google Scholar 

  16. 16

    D. Reistad Proceedings of the Workshop on Beam Cooling and Related Topics COOL2007, Bad Kreuznach, MOA2C05 (2007) p. 44

    Article  Google Scholar 

  17. 17

    H. Stockhorst et al., Proc. EPAC08, Genoa, Italy THPP055, 3491 (2008)

    Google Scholar 

  18. 18

    A. Täschner et al., Nucl. Instrum. Methods A 660, 22 (2011)

    ADS  Article  Google Scholar 

  19. 19

    C. Bargholtz et al., Nucl. Instrum. Methods A 587, 178 (2008)

    ADS  Article  Google Scholar 

  20. 20

    M. Büscher et al., AIP Conf. Proc. 814, 614 (2006)

    ADS  Article  Google Scholar 

  21. 21

    M. Büscher et al., Int J. Mod. Phys. E 18, 505 (2009)

    ADS  Article  Google Scholar 

  22. 22

    A. Smirnov, in Proceedings of COOL2009, Lanzhou, China, MOM2MCIO02

  23. 23

    Collaboration, Technical Design Report for the Solenoid and Dipole Spectrometer Magnets, arXiv:0907.0169v1 (2009)

  24. 24

    H. Staengle et al., Nucl. Instrum. Methods A 397, 261 (1997)

    ADS  Article  Google Scholar 

  25. 25

    K. Mengel et al., IEEE Trans. Nucl. Sci. 45, 681 (1998)

    ADS  Article  Google Scholar 

  26. 26

    R. Novotny et al., IEEE Trans. Nucl. Sci. 47, 1499 (2000)

    ADS  Article  Google Scholar 

  27. 27

    M. Hoek et al., Nucl. Instrum. Methods A 486, 136 (2002)

    ADS  Article  Google Scholar 

  28. 28

    Collaboration, EMC Technical Design Report, Technical report, Darmstadt (2008) arXiv:0810.1216v1

  29. 29

    N. Akopov et al., Nucl. Instrum. Methods A 479, 511 (2002)

    ADS  Article  Google Scholar 

  30. 30

    I.-H. Chiang, KOPIO Proposal (1999) http://project-x-kaons.fnal.gov/detector/Kopio%20proposal.pdf

  31. 31

    I. Peric, Nucl. Instrum. Methods A 582, 876 (2007)

    ADS  Article  Google Scholar 

  32. 32

    P. Fabbricatore et al., IEEE Trans. Appl. Supercond. 9, 847 (1999)

    Article  Google Scholar 

  33. 33

    Mylar, polyester film, registered trademark of DuPont, www.dupont.com

  34. 34

    Thermo-plastic, Acrylonitrile-Butadiene-Styrene

  35. 35

    P. Wintz, A large tracking detector in vacuum consisting of self-supporting straw tubes, in Intersections of Particle and Nuclear Physics: 8th Conference CIPANP2003, Vol. 698, issue 1, AIP Conf. Proc. (2004) pp. 789--792

  36. 36

    L. Aysto, Conceptual Design Report, GSI, Darmstadt (2001)

  37. 37

    R. Veenhof, GARFIELD, Simulation of gaseous detectors, version 7.04 edition, CERN Program library write-up W 5050

  38. 38

    C. Avanzini et al., Nucl. Instrum. Methods A 449, 237 (2000)

    ADS  Article  Google Scholar 

  39. 39

    Pattex plastik is an Henkel product, www.pattex.de/Pattex_Plastic.1514.0.html

  40. 40

    UHU endfest 300, UHU GmbH & Co. KG - P.O. Box 1552, D-77813 Bühl, www.uhu.de

  41. 41

    Loctite 408, Henkel Loctite Europe, Gutenbergstr. 3, 85748 Garching, www.henkel.com

  42. 42

    L. Benussi et al., Nucl. Instrum. Methods A 419, 648 (1998)

    ADS  Article  Google Scholar 

  43. 43

    E. Basile et al., IEEE Trans. Nucl. Sci. 53, 1375 (2006)

    ADS  Article  Google Scholar 

  44. 44

    Bronkhorst High-Tech, Nijverheidsstraat 1A, NL-7261 AK Ruurlo (NL), http://www.bronkhorst.com

  45. 45

    Garfield - simulation of gaseous detectors, http://garfield.web.cern.ch/garfield/

  46. 46

    I. Peric et al., Nucl. Instrum. Methods A 565, 178 (2006)

    ADS  Article  Google Scholar 

  47. 47

    T. Kugathasan, G. Mazza, A. Rivetti, L. Toscano, A 15 W 12-bit Dynamic Range Charge Measuring Front-End in 0.13 m CMOS, IEEE Nuclear Science Symposium Conference Record (2010) pp. 1667--1673

  48. 48

    J. Kalisz, IEEE Trans. Instrum. Meas. 46, 55 (1997)

    Google Scholar 

  49. 49

    J. Wu, The 10-ps wave union TDC: Improving FPGA TDC resolution beyond its cell delay, IEEE Nuclear Science Symposium Conference Record (2008) pp. 1082--3654

  50. 50

    E. Bayer, IEEE Trans. Nucl. Sci. 58, 1547 (2011)

    ADS  Article  Google Scholar 

  51. 51

    J. Wu, ADC and TDC implemented using FPGA, IEEE Nuclear Science Symposium Conference Record (2007) pp. 281--286

  52. 52

    C. Ugur, GSI annual report (2010)

  53. 53

    Experimental Physics and Industrial Control System, Technical report, Argonne National Laboratory, http://www.aps.anl.gov/epics/

  54. 54

    G. Avolio et al., Nucl. Instrum. Methods A 523, 309 (2004)

    ADS  Article  Google Scholar 

  55. 55

    A. Biscossa et al., Nucl. Instrum. Methods A 419, 331 (1998)

    ADS  Article  Google Scholar 

  56. 56

    M. Bellomo et al., Nucl. Instrum. Methods A 573, 340 (2007)

    ADS  Article  Google Scholar 

  57. 57

    S. Costanza Design of the Central Tracker of the experiment, PhD thesis, Università degli Studi di Pavia (2010)

    Article  Google Scholar 

  58. 58

    B. Aubert et al., Nucl. Instrum. Methods A 479, 1 (2002)

    ADS  Article  Google Scholar 

  59. 59

    M. Ablikim et al., Nucl. Instrum. Methods A 614, 345 (2010)

    ADS  Article  Google Scholar 

  60. 60

    G. Agakishiev et al., Eur. Phys. J. A 41, 243 (2009)

    ADS  Article  Google Scholar 

  61. 61

    W. Blum, W.R.R. Rolandi, Particle Detection with Drift Chambers (Springer Verlag, Berlin, 1994)

  62. 62

    A. Alikhanov et al., Proc. CERN Symp. High Energy Acc. Pion Phys. 2, 87 (1956)

    Google Scholar 

  63. 63

    W. Allison, J. Cobb, Annu. Rev. Nucl. Part. Sci. 30, 253 (1980)

    ADS  Article  Google Scholar 

  64. 64

    B. Dolgoshein, Nucl. Instrum. Methods A 433, 533 (1999)

    ADS  Article  Google Scholar 

  65. 65

    V. Bashkirov et al., Nucl. Instrum. Methods A 433, 560 (1999)

    ADS  Article  Google Scholar 

  66. 66

    T. Akesson et al., Nucl. Instrum. Methods A 474, 172 (2001)

    ADS  Article  Google Scholar 

  67. 67

    E. Badura et al., Part. Nucl. Lett. 1, 73 (2000)

    Google Scholar 

  68. 68

    M. Newcomer, IEEE Trans. Nucl. Sci. 40, 630 (1993)

    ADS  Article  Google Scholar 

  69. 69

    M. Hohlmann, C. Padilla, N. Tesch, M. Titov, Nucl. Instrum. Methods A 494, 179 (2002)

    ADS  Article  Google Scholar 

  70. 70

    T. Ferguson et al., Nucl. Instrum. Methods A 478, 254 (2002)

    ADS  Article  Google Scholar 

  71. 71

    M. Titov, Innovative detectors for supercolliders, in Proceedings of the 42nd Workshop of the INFN ELOISATRON Project, edited by E. Nappi, J. Seguinot (World Scientific Publishing Co. Pte. Ltd., 2004) pp. 199--226, ISBN 9789812702951 arXiv:physics/0403055v2

  72. 72

    A. Gillitzer Strangeness Physics at COSY-TOF, Technical report, Forschungszentrum Jülich (2007) COSY Proposal no. 178

    Article  Google Scholar 

  73. 73

    P. Wintz, Commissioning of the COSY-TOF Straw Tube Tracker and the silicon-microstrip Quirl, Technical report, Forschungszentrum Jülich (2007) COSY Proposal no. 179

  74. 74

    F. Sauli, Principles of operation of multiwire proportional and drift chambers, Technical report, CERN 77-09, Geneva (1977)

  75. 75

    F. Lapique, F. Piuz, Nucl. Instrum. Methods 175, 297 (1980)

    ADS  Article  Google Scholar 

  76. 76

    J. Fischle, H. Heintze, B. Schmidt, Nucl. Instrum. Methods A 301, 202 (1991)

    ADS  Article  Google Scholar 

  77. 77

    J. Allison et al., Nucl. Instrum. Methods 133, 325 (1976)

    ADS  Article  Google Scholar 

  78. 78

    K. Lassilla-Perini, L. Urban, Nucl. Instrum. Methods A 362, 416 (1995)

    ADS  Article  Google Scholar 

  79. 79

    Geant3 manual, Technical report (1993) CERN program library W5013

  80. 80

    GEANT4: An object oriented toolkit for simulation in HEP, Technical report, Geneva (1998) http://geant4.cern.ch

  81. 81

    S. Biagi, Nucl. Instrum. Methods A 421, 234 (1999)

    ADS  Article  Google Scholar 

  82. 82

    P. Branchini et al., IEEE Trans. Nucl. Sci. 53, 317 (2006)

    ADS  Article  Google Scholar 

  83. 83

    W. Riegler et al., Nucl. Instrum. Methods A 443, 156 (2000)

    ADS  Article  Google Scholar 

  84. 84

    For the PANDA Collaboration (S. Spataro), J. Phys. Conf. Ser. 331, 032031 (2011)

    ADS  Article  Google Scholar 

  85. 85

    M. Al-Turany, F. Uhlig, PoS ACAT08, 048 (2008)

    Google Scholar 

  86. 86

    http://www.gsi.de/forschung/fair_experiments/CBM/index_e.html

  87. 87

    http://www-hades.gsi.de/

  88. 88

    http://www.gsi.de/forschung/kp/kr/R3B_e.html

  89. 89

    http://root.cern.ch/drupal/content/vmc

  90. 90

    I. Hřivnàčovà et al., eConf C0303241, THJT006 (2003) arXiv:cs/0306005

    Google Scholar 

  91. 91

    V. Innocente, CERN Program Library, W5013-E (1991)

  92. 92

    Computing Group, A data analysis and simulation framework for the Collaboration, Technical report (2006) Scientific Report GSI

  93. 93

    Computing Group, Status of the PandaRoot simulation and analysis framework, Technical report (2007) Scientific Report GSI

  94. 94

    A. Wronska, Simulation of the experiment with PandaRoot, in Proceedings of MENU2007, eConf C070910 (2007) p. 307

  95. 95

    R. Fruhwirth et al., Nucl. Instrum. Methods A 490, 366 (2002)

    ADS  Article  Google Scholar 

  96. 96

    P. Hough, U.S. patent 3069654 (1962)

  97. 97

    http://www.slac.stanford.edu/~lange/EvtGen

  98. 98

    R.E. Kalman, J. Basic Eng. 82, 34 (1961)

    Google Scholar 

  99. 99

    R. Fruhwirth et al., Nucl. Instrum. Methods A 262, 444 (1987)

    ADS  Article  Google Scholar 

  100. 100

    A. Fontana, P. Genova, L. Lavezzi, A. Rotondi, Track following in dense media and inhomogeneous magnetic fields, Technical report (2007).

  101. 101

    L. Lavezzi, The fit of nuclear tracks in high precision spectroscopy experiments, PhD thesis, Università degli Studi di Pavia (2007)

  102. 102

    C. Höppner et al., Nucl. Instrum. Methods A 620, 518 (2010)

    ADS  Article  Google Scholar 

  103. 103

    R. Fruhwirth, Data Analysis Techniques For High Energy Physics (Cambridge University Press, 1990)

  104. 104

    V. Innocente, E. Nagy, Nucl. Instrum. Methods A 324, 297 (1993)

    ADS  Article  Google Scholar 

  105. 105

    G. Schepers, Particle Identification at , Technical report (2009) Report of the PID TAG

  106. 106

    V. Flaminio, Compilation Of Cross-Sections, 3, P And Anti-P Induced Reactions, Technical report (1984) CERN-HERA-84-01

  107. 107

    M.A. Selen, R.M. Hans, M.J. Haney, IEEE Trans. Nucl. Sci. 48, 562 (2001)

    ADS  Article  Google Scholar 

  108. 108

    R.M. Hans, C.L. Plager, M.A. Selen, M.J. Haney, IEEE Trans. Nucl. Sci. 48, 552 (2001)

    ADS  Article  Google Scholar 

  109. 109

    B. Aubert et al., Nucl. Instrum. Methods A 479, 1 (2002)

    ADS  Article  Google Scholar 

  110. 110

    A. Abashian et al., Nucl. Instrum. Methods A 479, 117 (2002)

    ADS  Article  Google Scholar 

  111. 111

    M. Ablikim et al., Nucl. Instrum. Methods A 614, 345 (2010)

    ADS  Article  Google Scholar 

  112. 112

    G.P. Heath et al., Nucl. Instrum. Methods A 315, 431 (1992)

    ADS  Article  Google Scholar 

  113. 113

    P.D. Allfrey et al., Nucl. Instrum. Methods A 580, 1257 (2007)

    ADS  Article  Google Scholar 

  114. 114

    I. Abt et al., Nucl. Instrum. Methods A 386, 310 (1997)

    ADS  Article  Google Scholar 

  115. 115

    A. Baird et al., IEEE Trans. Nucl. Sci. 48, 310 (2001)

    ADS  Google Scholar 

  116. 116

    Y.H. Fleming, The H1 First Level Fast Track Trigger, PhD thesis, DESY-THESIS-2003-045 (2003)

  117. 117

    T. Affolder et al., Nucl. Instrum. Methods A 526, 249 (2004)

    ADS  Article  Google Scholar 

  118. 118

    E.J. Thomsonand et al., IEEE Trans. Nucl. Sci. 49, 1063 (2002)

    ADS  Article  Google Scholar 

  119. 119

    R. Downing et al., Nucl. Instrum. Methods A 570, 36 (2007)

    ADS  Article  Google Scholar 

  120. 120

    V. Abazov et al., Nucl. Instrum. Methods A 565, 463 (2005)

    ADS  Article  Google Scholar 

  121. 121

    J. Olsen et al., IEEE Trans. Nucl. Sci. 51, 345 (2004)

    ADS  Article  Google Scholar 

  122. 122

    S. Chatrchyan et al., JINST 3, S08004 (2008)

    ADS  Article  Google Scholar 

  123. 123

    G. Aad et al., JINST 3, S08003 (2008)

    ADS  Article  Google Scholar 

  124. 124

    A. dos Anjos et al., IEEE Trans. Nucl. Sci. 51, 909 (2004)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors