Preparation of the 178m2Hf isomer used in the induced gamma decay experiment by X-ray from synchrotron radiation facility

  • Tianli Yang
  • TaoJiang
  • Rende Ze
  • Huailong Wu
  • Yuhui He
  • Jun Yang
  • Chaowen Yang
Special Article - Tools for Experiment and Theory

Abstract

It is widely acknowledged that the 178m2Hf nuclide is the most suitable substance to study the decay characteristic of the isomer induced by low-energy X-ray. In order to conduct the experiment on the induced gamma emission, the research group has started producing the 178m2Hf nuclide based on the 176Yb(α, 2n)178m2Hf reaction. After the chemical purification is conducted, the sample is prepared and used in Shanghai Synchrotron Radiation Facility. During the production of isomer, the natural metal Yb target is got through magnetron sputtering. Bombarded by α particles about 27 MeV, the 178m2Hf nuclide reaches about 1012. Yb target prepared in this way is most suitable for the production of 178m2Hf nuclide in the CS30 cyclotron. There are various nuclides in the irradiated target and the main long-lived nuclides are 173Lu, 172Lu, 175Hf, 172Hf and 65Zn. The chemical separation of 178m2Hf is studied and its process is monitored by radioactive tracer. The above result shows that decontamination factors of Zn and Lu are 105 and 103, respectively, and the yield of hafnium is 69%. Under the protection of vacuum filtration technology, the purified 178m2Hf isomers are entirely transferred to the surface of filter paper, in order to form the sample which satisfies requirements of X-ray triggering the 178m2Hf isomer decay experiment in Shanghai Synchrotron Radiation Facility in the future.

References

  1. 1.
    C.B. Collins et al., Phys. Rev. C 42, 1813 (1990).ADSCrossRefGoogle Scholar
  2. 2.
    C.B. Collins et al., Phys. Rev. C 37, 2267 (1988).ADSCrossRefGoogle Scholar
  3. 3.
    S. Olariu, Agata Olariu, Phys. Rev. C 58, 333 (1998).ADSCrossRefGoogle Scholar
  4. 4.
    C.B. Collins et al., Laser Phys. 9, 8 (1999).Google Scholar
  5. 5.
    C.B. Collins et al., Phys. Rev. Lett. 83, 695 (1999).ADSCrossRefGoogle Scholar
  6. 6.
    C.B. Collins et al., Phys. At. Nucl. 63, 2067 (2000).CrossRefGoogle Scholar
  7. 7.
    C.B. Collins, F. Davanloo, A.C. Rusu, M.C. Iosif, N.C. Zoita, D.T. Camase, J.M. Hicks, S.A. Karamian et al., Phys. Rev. C 61, 054305 (2000).ADSCrossRefGoogle Scholar
  8. 8.
    C.B. Collins et al., Hyperfine Interact. 135, 51 (2001).ADSCrossRefGoogle Scholar
  9. 9.
    C.B. Collins et al., Radiat. Phys. Chem. 71, 619 (2004).ADSCrossRefGoogle Scholar
  10. 10.
    C.B. Collins et al., Laser Phys. Lett. 2, 162 (2005).ADSCrossRefGoogle Scholar
  11. 11.
    C.B. Collins et al., Laser Phys. 14, 154 (2004).Google Scholar
  12. 12.
    C.B. Collins et al., Europhys. Lett. 57, 677 (2002).ADSCrossRefGoogle Scholar
  13. 13.
    P. McDaniel et al., Sandia Report SAND2007 2690, 1 (2008).Google Scholar
  14. 14.
    I. Ahmad et al., Phys. Rev. C 67, 041305 (2003).ADSCrossRefGoogle Scholar
  15. 15.
    I. Ahmad et al., Phys. Rev. Lett. 87, 072503 (2001).ADSCrossRefGoogle Scholar
  16. 16.
    J.J. Carroll et al., Hyperfine Interact. 143, 37 (2002).ADSCrossRefGoogle Scholar
  17. 17.
    H.E. Roberts et al., Hyperfine Interact. 143, 111 (2002).ADSCrossRefGoogle Scholar
  18. 18.
    Yu.Ts. Oganessian et al., Hyperfine Interact. 107, 129 (1997).ADSCrossRefGoogle Scholar
  19. 19.
    S.A. Karamian et al., Nucl. Instrum. Methods Phys. Res. A 530, 463 (2004).ADSCrossRefGoogle Scholar
  20. 20.
    S.A. Karamian et al., Nucl. Instrum. Methods Phys. Res. A 489, 448 (2002).ADSCrossRefGoogle Scholar
  21. 21.
    S.A. Karamian et al., Nucl. Instrum. Methods Phys. Res. A 530, 609 (2004).ADSCrossRefGoogle Scholar
  22. 22.
    Obrien HA, Nucl. Instrum. Methods Phys. Res. B 40-41, 1126 (1989).ADSCrossRefGoogle Scholar
  23. 23.
    Karamian et al., Nucl. Instrum. Methods Phys. Res. A 600, 488 (2009).ADSCrossRefGoogle Scholar
  24. 24.
    Yu.Ts. Oganessian et al., J. Phys. G 18, 393 (1992).ADSCrossRefGoogle Scholar
  25. 25.
    J.F. Ziegler, J.P. Biersack, U. Littmark, The Stopping and Range of Ions in Matter (Pergamon, New York, 1985).Google Scholar
  26. 26.
    Nuclear Navigator, Version 3.4, June 2000. Nuclear Navigator was developed for OTEC by Battelle Memorial Institute.Google Scholar
  27. 27.
    I. Ahmad et al., Phys. Rev. C 71, 024311 (2005).ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Tianli Yang
    • 1
  • TaoJiang
    • 1
  • Rende Ze
    • 1
  • Huailong Wu
    • 1
  • Yuhui He
    • 1
  • Jun Yang
    • 1
  • Chaowen Yang
    • 2
  1. 1.Institute of Nuclear Physics and ChemistryChina Academy of Engineering PhysicsMianyangChina
  2. 2.Sichuan UniversityChengduChina

Personalised recommendations