Advertisement

Double-folding analysis of the 6Li + 58Ni reaction using the ab initio density distribution

  • M. AygunEmail author
Regular Article - Theoretical Physics

Abstract

The elastic scattering angular distributions of the 6 Li + 58 Ni reaction are reanalyzed by using the double-folding model (DFM) within the framework of the optical model (OM) at energies near the Coulomb barrier, E Lab = 9.9, 11.2, 12.1, 13.0 and 14.0 MeV. With this goal, for the first time, the no-core full configuration (NCFC) density distribution (DD) of the 6 Li nucleus is used in order to obtain the real potentials. Also, in order to see the validity of NCFC DD, another density distribution (Gaussian shape) of the 6 Li nucleus is used to obtain the real potentials in DF calculations. The results with NCFC DD are compared with Gaussian shape (GS) DD as well as the experimental data. It has been seen that the NCFC DD results are in agreement with the experimental data, giving better results than GS DD.

Keywords

Angular Distribution Optical Model Target Nucleus Coulomb Barrier Gaussian Shape 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    L.T. Chua et al., Nucl. Phys. A 273, 243 (1976).ADSCrossRefGoogle Scholar
  2. 2.
    G.R. Satchler, Phys. Rev. C 22, 919 (1980).ADSCrossRefGoogle Scholar
  3. 3.
    A. Nadasen et al., Phys. Rev. C 37, 1 (1988).CrossRefGoogle Scholar
  4. 4.
    A. Nadasen et al., Phys. Rev. C 40, 3 (1989).CrossRefGoogle Scholar
  5. 5.
    C. Williamson et al., Phys. Rev. C 21, 4 (1980).CrossRefGoogle Scholar
  6. 6.
    M. El-Azab Farid, M.A. Hassanain, Nucl. Phys. A 678, 39 (2000).ADSCrossRefGoogle Scholar
  7. 7.
    N. Keeley et al., Nucl. Phys. A 834, 792c (2010).ADSCrossRefGoogle Scholar
  8. 8.
    M. Biswas et al., Nucl. Phys. A 802, 67 (2008).ADSCrossRefGoogle Scholar
  9. 9.
    S. Kailas, Phys. Rev. C 41, 6 (1990).CrossRefGoogle Scholar
  10. 10.
    K.X. Chen et al., Phys. Rev. C 81, 014603 (2010).ADSCrossRefGoogle Scholar
  11. 11.
    K. Rusek et al., Phys. Rev. C 52, 5 (1995).CrossRefGoogle Scholar
  12. 12.
    E.F. Aguilera et al., Phys. Rev. C 79, 021601 (2009).MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    M. Aygun et al., Nucl. Phys. A 848, 245 (2010).ADSCrossRefGoogle Scholar
  14. 14.
    C. Cockrell et al., Phys. Rev. C 86, 034325 (2012).ADSCrossRefGoogle Scholar
  15. 15.
    K.H. Bray et al., Nucl. Phys. A 189, 35 (1972).ADSCrossRefGoogle Scholar
  16. 16.
    Reference Input Parameter Library (RIPL-2), http://www-nds.iaea.org/RIPL-2/.
  17. 17.
    I.J. Thompson, Comput. Phys. Rep. 7, 167 (1988).ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of PhysicsBitlis Eren UniversityBitlisTurkey

Personalised recommendations