Preparation and characterisation of isotopically enriched Ta2O5 targets for nuclear astrophysics studies

  • LUNA Collaboration
  • A. Caciolli
  • D. A. Scott
  • A. Di Leva
  • A. Formicola
  • M. Aliotta
  • M. Anders
  • A. Bellini
  • D. Bemmerer
  • C. Broggini
  • M. Campeggio
  • P. Corvisiero
  • R. Depalo
  • Z. Elekes
  • Zs. Fülöp
  • G. Gervino
  • A. Guglielmetti
  • C. Gustavino
  • Gy. Gyürky
  • G. Imbriani
  • M. Junker
  • M. Marta
  • R. Menegazzo
  • E. Napolitani
  • P. Prati
  • V. Rigato
  • V. Roca
  • C. Rolfs
  • C. Rossi Alvarez
  • E. Somorjai
  • C. Salvo
  • O. Straniero
  • F. Strieder
  • T. Szücs
  • F. Terrasi
  • H. P. Trautvetter
  • D. Trezzi
Regular Article - Experimental Physics

Abstract

The direct measurement of reaction cross-sections at astrophysical energies often requires the use of solid targets of known thickness, isotopic composition, and stoichiometry that are able to withstand high beam currents for extended periods of time. Here, we report on the production and characterisation of isotopically enriched Ta2O5 targets for the study of proton-induced reactions at the Laboratory for Underground Nuclear Astrophysics facility of the Laboratori Nazionali del Gran Sasso. The targets were prepared by anodisation of tantalum backings in enriched water (up to 66% in 17O and up to 96% in 18O. Special care was devoted to minimising the presence of any contaminants that could induce unwanted background reactions with the beam in the energy region of astrophysical interest. Results from target characterisation measurements are reported, and the conclusions for proton capture measurements with these targets are drawn.

References

  1. 1.
    C.E. Rolfs, W.S. Rodney, Cauldrons in the Cosmos (The University of Chicago Press, 1988).Google Scholar
  2. 2.
    C. Iliadis, Nuclear Physics of Stars (Wiley-VCH, New York, 2007).Google Scholar
  3. 3.
    H. Costantini et al., Rep. Progr. Phys. 72, 086301 (2009).ADSCrossRefGoogle Scholar
  4. 4.
    C. Broggini et al., Annu. Rev. Nucl. Part. Sci. 60, 53 (2010).ADSCrossRefGoogle Scholar
  5. 5.
    S. Palmerini, M. La Cognata et al., Astrophys. J. 729, 3 (2011).ADSCrossRefGoogle Scholar
  6. 6.
    C. Iliadis, A. Champagne et al., Astrophys. J. Suppl. Ser. 142, 105 (2002).ADSCrossRefGoogle Scholar
  7. 7.
    S. Seuthe et al., Nucl. Instrum. Methods A 260, 33 (1987).ADSCrossRefGoogle Scholar
  8. 8.
    D.A. Scott, to be published in Phys. Rev. Lett. (2012).Google Scholar
  9. 9.
    D. Phillips, Nucl. Instrum. Methods 116, 195 (1974).ADSCrossRefGoogle Scholar
  10. 10.
    D.A. Vermilyea, Acta Metall. 1, 282 (1953).CrossRefGoogle Scholar
  11. 11.
    N. Cabrera, N.F. Mott, Rep. Progr. Phys. 12, 163 (1949).ADSCrossRefGoogle Scholar
  12. 12.
    M.P. Seah et al., Nucl. Instrum. Methods B 30, 128 (1988).ADSCrossRefGoogle Scholar
  13. 13.
    M. Wiescher et al., Nucl. Phys. A 349, 165 (1980).ADSCrossRefGoogle Scholar
  14. 14.
    A. Formicola et al., Nucl. Instrum. Methods A 507, 609 (2003).ADSCrossRefGoogle Scholar
  15. 15.
    J.F. Ziegler, Nucl. Instrum. Methods B 219, 1027 (2004) H. Andersen, J.F. Ziegler, The Stopping and Ranges of Ions in Matter.ADSCrossRefGoogle Scholar
  16. 16.
    W.A. Fowler et al., Rev. Mod. Phys. 20, 236 (1948).ADSCrossRefGoogle Scholar
  17. 17.
    M.A.N.W.K. Chu, J.W. Mayer, Backscattering Spectrometry (Academic Press, 1978).Google Scholar
  18. 18.
    M. Mayer, AIP Conf. Proc. 475, 541 (1999).ADSCrossRefGoogle Scholar
  19. 19.
    D. Phillips, J.P.S. Pringle, Nucl. Instrum. Methods 135, 389 (1976).ADSCrossRefGoogle Scholar
  20. 20.
    F.G.R.A. Benninghoven, H.W. Werner, Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications, and Trends (Wiley, New York, 1987).Google Scholar
  21. 21.
    J.P.S. Pringle, J. Electrochem. Soc. 119, 482 (1972).CrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • LUNA Collaboration
  • A. Caciolli
    • 1
    • 2
  • D. A. Scott
    • 3
  • A. Di Leva
    • 4
  • A. Formicola
    • 5
  • M. Aliotta
    • 3
  • M. Anders
    • 6
  • A. Bellini
    • 7
  • D. Bemmerer
    • 6
  • C. Broggini
    • 1
  • M. Campeggio
    • 8
  • P. Corvisiero
    • 7
  • R. Depalo
    • 9
  • Z. Elekes
    • 6
  • Zs. Fülöp
    • 10
  • G. Gervino
    • 11
  • A. Guglielmetti
    • 8
  • C. Gustavino
    • 5
  • Gy. Gyürky
    • 10
  • G. Imbriani
    • 4
  • M. Junker
    • 5
  • M. Marta
    • 6
  • R. Menegazzo
    • 1
  • E. Napolitani
    • 12
  • P. Prati
    • 7
  • V. Rigato
    • 2
  • V. Roca
    • 4
  • C. Rolfs
    • 13
  • C. Rossi Alvarez
    • 1
  • E. Somorjai
    • 10
  • C. Salvo
    • 5
    • 7
  • O. Straniero
    • 14
  • F. Strieder
    • 13
  • T. Szücs
    • 10
  • F. Terrasi
    • 15
  • H. P. Trautvetter
    • 13
  • D. Trezzi
    • 8
  1. 1.INFNSezione di PadovaPadovaItaly
  2. 2.INFNLaboratori Nazionali di LegnaroLegnaroItaly
  3. 3.SUPA, School of Physics and AstronomyUniversity of EdinburghEdinburghUK
  4. 4.Dipartimento di Scienze FisicheUniversità di Napoli “Federico II”, and INFNNapoliItaly
  5. 5.INFNLaboratori Nazionali del Gran SassoAssergiItaly
  6. 6.Helmholtz-Zentrum Dresden-RossendorfDresdenGermany
  7. 7.Dipartimento di FisicaUniversità di Genova, and INFNGenovaItaly
  8. 8.Università degli Studi di Milano and INFNMilanoItaly
  9. 9.Dipartimento di Fisica e AstronomiaUniversità di Padova, and INFNPadovaItaly
  10. 10.Institute of Nuclear Research (ATOMKI)DebrecenHungary
  11. 11.Dipartimento di Fisica SperimentaleUniversità degli Studi di Torino, and INFNTorinoItaly
  12. 12.MATIS-IMM-CNR at Dipartimento di Fisica e AstronomiaUniversità di PadovaPadovaItaly
  13. 13.Institut für Experimentalphysik IIIRuhr-Universität BochumBochumGermany
  14. 14.Osservatorio Astronomico di Collurania, Teramo, and INFNSezione di NapoliNapoliItaly
  15. 15.Seconda Università di Napoli, Caserta, and INFNSezione di NapoliNapoliItaly

Personalised recommendations