Advertisement

Chiral restoration effects on the shear viscosity of a pion gas

  • K. Heckmann
  • M. BuballaEmail author
  • J. Wambach
Regular Article - Theoretical Physics

Abstract

We investigate the shear viscosity of a pion gas in relativistic kinetic theory, using the Nambu-Jona-Lasinio model to construct the pion mass and the ππ-interaction at finite temperature. Whereas at low temperatures the scattering properties and, hence, the viscosity are in agreement with lowest-order chiral perturbation theory, we find strong medium modifications in the crossover region. Here the system is strongly coupled and the scattering lengths diverge, similarly as for ultra-cold Fermi gases at a Feshbach resonance. As a consequence, the ratio η/s is found to be strongly reduced as compared to calculations without medium-modified masses and scattering amplitudes. However, the quantitative results are very sensitive to the details of the applied approximations.

Keywords

Shear Viscosity Momentum Dependence Feshbach Resonance Linear Sigma Model Crossover Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    P. Huovinen, P.F. Kolb, U.W. Heinz, P.V. Ruuskanen, S.A. Voloshin, Phys. Lett. B 503, 58 (2001) hep-ph/0101136.ADSCrossRefGoogle Scholar
  2. 2.
    D. Teaney, J. Lauret, E.V. Shuryak, Nucl. Phys. A 698, 479 (2002) nucl-th/0104041.ADSCrossRefGoogle Scholar
  3. 3.
    PHENIX Collaboration (A. Adare et al.), Phys. Rev. Lett. 98, 162301 (2007) nucl-ex/0608033.ADSCrossRefGoogle Scholar
  4. 4.
    STAR Collaboration (J. Adams et al.), Phys. Rev. C 72, 014904 (2005) nucl-ex/0409033.ADSCrossRefGoogle Scholar
  5. 5.
    M. Luzum, P. Romatschke, Phys. Rev. C 78, 034915 (2008) arXiv:0804.4015.ADSCrossRefGoogle Scholar
  6. 6.
    M. Luzum, P. Romatschke, Phys. Rev. C 79, 039903 (2009) arXiv:0804.4015.ADSCrossRefGoogle Scholar
  7. 7.
    H. Song, U. Heinz, J. Phys. G 36, 064033 (2009) arXiv:0812.4274.ADSCrossRefGoogle Scholar
  8. 8.
    H. Niemi, G.S. Denicol, P. Huovinen, E. Molnar, D.H. Rischke (2011) arXiv:1101.2442.
  9. 9.
    M. Prakash, M. Prakash, R. Venugopalan, G. Welke, Phys. Rep. 227, 321 (1993).ADSCrossRefGoogle Scholar
  10. 10.
    A. Dobado, J.R. Peláez, Phys. Rev. D 47, 4883 (1993) hep-ph/9301276.ADSCrossRefGoogle Scholar
  11. 11.
    A. Dobado, J.R. Peláez, Phys. Rev. D 59, 034004 (1998) hep-ph/9806416.ADSCrossRefGoogle Scholar
  12. 12.
    A. Dobado, S.N. Santalla, Phys. Rev. D 65, 096011 (2002) hep-ph/0112299.ADSCrossRefGoogle Scholar
  13. 13.
    A. Dobado, F.J. Llanes-Estrada, Phys. Rev. D 69, 116004 (2004) hep-ph/0309324.ADSCrossRefGoogle Scholar
  14. 14.
    D. Fernández-Fraile, A. Gómez Nicola, Eur. Phys. J. A 31, 848 (2007) hep-ph/0610197.ADSCrossRefGoogle Scholar
  15. 15.
    J.W. Chen, E. Nakano, Phys. Lett. B 647, 371 (2007) arXiv:hep-ph/0604138.ADSCrossRefGoogle Scholar
  16. 16.
    J.W. Chen, Y.H. Li, Y.F. Liu, E. Nakano, Phys. Rev. D 76, 114011 (2007) arXiv:hep-ph/0703230.ADSCrossRefGoogle Scholar
  17. 17.
    K. Itakura, O. Morimatsu, H. Otomo, Phys. Rev. D 77, 014014 (2008) arXiv:0711.1034.ADSCrossRefGoogle Scholar
  18. 18.
    H. Lehmann, Phys. Lett. B 41, 529 (1972).ADSCrossRefGoogle Scholar
  19. 19.
    H. Pagels, Phys. Rep. 16, 219 (1975).MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    S. Weinberg, Physica A 96, 327 (1979).ADSCrossRefGoogle Scholar
  21. 21.
    J. Gasser, H. Leutwyler, Ann. Phys. 158, 142 (1984).MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    P. Gerber, H. Leutwyler, Nucl. Phys. B 321, 387 (1989).ADSCrossRefGoogle Scholar
  23. 23.
    P. Gerber, H. Leutwyler, J.L. Goity, Phys. Lett. B 246, 513 (1990).ADSCrossRefGoogle Scholar
  24. 24.
    Y. Nambu, G. Jona-Lasinio, Phys. Rev. 122, 345 (1961).ADSCrossRefGoogle Scholar
  25. 25.
    Y. Nambu, G. Jona-Lasinio, Phys. Rev. 124, 246 (1961).ADSCrossRefGoogle Scholar
  26. 26.
    U. Vogl, W. Weise, Prog. Part. Nucl. Phys. 27, 195 (1991).ADSCrossRefGoogle Scholar
  27. 27.
    S.P. Klevansky, Rev. Mod. Phys. 64, 649 (1992).MathSciNetADSCrossRefGoogle Scholar
  28. 28.
    T. Hatsuda, T. Kunihiro, Phys. Rep. 247, 221 (1994) hep-ph/9401310.ADSCrossRefGoogle Scholar
  29. 29.
    M. Buballa, Phys. Rep. 407, 205 (2005) hep-ph/0402234.ADSCrossRefGoogle Scholar
  30. 30.
    A. Dobado, F.J. Llanes-Estrada, J.M. Torres-Rincon, Phys. Rev. D 80, 114015 (2009) arXiv:0907.5483.ADSCrossRefGoogle Scholar
  31. 31.
    H.J. Schulze, J. Phys. G 21, 185 (1995).MathSciNetADSCrossRefGoogle Scholar
  32. 32.
    E. Quack, P. Zhuang, Y. Kalinovsky, S.P. Klevansky, J. Hüfner, Phys. Lett. B 348, 1 (1995) hep-ph/9410243.ADSCrossRefGoogle Scholar
  33. 33.
    P.K. Kovtun, D.T. Son, A.O. Starinets, Phys. Rev. Lett. 94, 111601 (2005) hep-th/0405231.ADSCrossRefGoogle Scholar
  34. 34.
    T.D. Cohen, Phys. Rev. Lett. 99, 021602 (2007) hep-th/0702136.MathSciNetADSCrossRefGoogle Scholar
  35. 35.
    S. Chapman, T.G. Cowling, The Mathematical Theory of Non-Uniform Gases (Cambridge University Press, 1970).Google Scholar
  36. 36.
    S.R. de Groot, W.A. van Leeuwn, C.G. van Weert, Relativistic Kinetic Theory (North-Holland Publishing Company, 1980).Google Scholar
  37. 37.
    R.L. Liboff, Kinetic Theory: Classical, Quantum, and Relativistic Descriptions (Springer, 2003).Google Scholar
  38. 38.
    M. Oertel, M. Buballa, J. Wambach, Phys. At. Nucl. 64, 698 (2001) hep-ph/0008131.CrossRefGoogle Scholar
  39. 39.
    S. Gasiorowicz, D.A. Geffen, Rev. Mod. Phys. 41, 531 (1969).MathSciNetCrossRefADSGoogle Scholar
  40. 40.
    S. Weinberg, Phys. Rev. Lett. 17, 616 (1966).ADSCrossRefGoogle Scholar
  41. 41.
    E. Quack, S.P. Klevansky, Phys. Rev. C 49, 3283 (1994).ADSCrossRefGoogle Scholar
  42. 42.
    V. Dmitrasinovic, H.J. Schulze, R. Tegen, R.H. Lemmer, Ann. Phys. 238, 332 (1995).ADSCrossRefGoogle Scholar
  43. 43.
    M. Oertel, M. Buballa, J. Wambach, Phys. Lett. B 477, 77 (2000) hep-ph/9908475.ADSCrossRefGoogle Scholar
  44. 44.
    M. Oertel, M. Buballa, J. Wambach, Nucl. Phys. A 676, 247 (2000) hep-ph/0001239.ADSCrossRefGoogle Scholar
  45. 45.
    R.S. Plant, M.C. Birse, Nucl. Phys. A 703, 717 (2002) hep-ph/0007340.ADSCrossRefGoogle Scholar
  46. 46.
    K. Goeke, M.M. Musakhanov, M. Siddikov, Phys. Rev. D 76, 076007 (2007) arXiv:0707.1997.ADSCrossRefGoogle Scholar
  47. 47.
    J. Liao, V. Koch, Phys. Rev. C 81, 014902 (2010) arXiv:0909.3105.ADSCrossRefGoogle Scholar
  48. 48.
    A. Muronga, Phys. Rev. C 69, 044901 (2004) arXiv:nucl-th/0309056.ADSCrossRefGoogle Scholar
  49. 49.
    M.I. Gorenstein, M. Hauer, O.N. Moroz, Phys. Rev. C 77, 024911 (2008) arXiv:0708.0137.ADSCrossRefGoogle Scholar
  50. 50.
    J. Noronha-Hostler, J. Noronha, C. Greiner, Phys. Rev. Lett. 103, 172302 (2009) arXiv:0811.1571.ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institut für KernphysikTechnische Universität DarmstadtDarmstadtGermany
  2. 2.GSI Helmholtz-Zentrum für SchwerionenforschungDarmstadtGermany

Personalised recommendations