Advertisement

The 0+ states excited by (p, t) reaction in 170Yb

  • Murat GerçeklioğluEmail author
Regular Article - Theoretical Physics

Abstract

In the present work, the low-lying 0+ states of the 170Yb isotope have been studied in order to explore what nuclear forces underlie the observed energy spectrum and its collective properties. Particularly, how basic trends in these data are correlated with the nuclear forces in our model Hamiltonian has been investigated. In this direction, a model Hamiltonian in which the spin-quadrupole force is introduced simultaneously with monopole pairing and quadrupole-quadrupole interactions has been used. To investigate the nature of these states, particular attention has been devoted to the two-nucleon transfer spectroscopic factors relative to the transition to the ground state and comparison of their calculated cumulative values with the experimental data. To expose the influence of the choice of the deformation parameters on the results, the calculations have been performed for two different quadrupole deformations. The results implied that a reasonable description for the distribution of the energies, the two-nucleon transfer spectroscopic factors and their cumulative values has been obtained in the framework of the present model. In addition, to point out the influence of the spin-quadrupole interaction on the excited 0+ states in 170Yb, the calculations have been repeated using the pairing plus quadrupole model.

Keywords

Spectroscopic Factor Collective Property Quadrupole Deformation Interact Boson Model Project Shell Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    P.E. Garrett, J. Phys. G 27, R1 (2001).ADSCrossRefGoogle Scholar
  2. 2.
    S.R. Lesher et al., Phys. Rev. C 66, 051305(R) (2002).ADSCrossRefGoogle Scholar
  3. 3.
    N.V. Zamfir et al., Phys. Rev. C 66, 057303 (2002).ADSCrossRefGoogle Scholar
  4. 4.
    R.M. Clark, R.F. Casten, L. Bettermann, R. Winkler, Phys. Rev. C 80, 011303(R) (2009).ADSCrossRefGoogle Scholar
  5. 5.
    D. Bonatsos et al., Phys. Rev. C 80, 034311 (2009).ADSCrossRefGoogle Scholar
  6. 6.
    Y. Sun et al., Phys. Rev. C 68, 061301(R) (2003).ADSCrossRefGoogle Scholar
  7. 7.
    N. Lo Iudice, A.V. Sushkov, N. Yu Shirikova, Phys. Rev. C 70, 064316 (2004).ADSCrossRefGoogle Scholar
  8. 8.
    M. Gerçeklioğlu, Czech. J. Phys. 52, 705 (2002).ADSCrossRefGoogle Scholar
  9. 9.
    M. Gerçeklioğlu, Ann. Phys. (Leipzig) 14, 312 (2005).ADSCrossRefGoogle Scholar
  10. 10.
    M. Gerçeklioğlu, Eur. Phys. J. A 25, 185 (2005).ADSCrossRefGoogle Scholar
  11. 11.
    N. Lo Iudice, A.V. Sushkov, N. Yu Shirikova, Phys. Rev. C 72, 034303 (2005).ADSCrossRefGoogle Scholar
  12. 12.
    D. Bucurescu et al., Phys. Rev. C 73, 064309 (2006).ADSCrossRefGoogle Scholar
  13. 13.
    D.A. Meyer et al., Phys. Rev. C 74, 044309 (2006).ADSCrossRefGoogle Scholar
  14. 14.
    N. Lo Iudice, A.V. Sushkov, Phys. Rev. C 78, 054304 (2008).ADSCrossRefGoogle Scholar
  15. 15.
    G. Ilie et al., Phys. Rev. C 82, 024303 (2010).ADSCrossRefGoogle Scholar
  16. 16.
    H.-F. Wirth et al., Phys. Rev. C 69, 044310 (2004).ADSCrossRefGoogle Scholar
  17. 17.
    Gh. Cata-Danil et al., Phys. Rev. C 54, 2059 (1996).ADSCrossRefGoogle Scholar
  18. 18.
    G. Suliman et al., Eur. Phys. J. A 36, 243 (2008).ADSCrossRefGoogle Scholar
  19. 19.
    S. Pascu et al., Phys. Rev. C 79, 064323 (2009).MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    S. Pascu et al., Phys. Rev. C 81, 014304 (2010).ADSCrossRefGoogle Scholar
  21. 21.
    M. Gerçeklioğlu, Phys. Rev. C 82, 024306 (2010).ADSCrossRefGoogle Scholar
  22. 22.
    L. Bettermann et al., Phys. Rev. C 80, 044333 (2009).ADSCrossRefGoogle Scholar
  23. 23.
    V.G. Soloviev, Theory of Complex Nuclei (Pergamon, Oxford, 1976).Google Scholar
  24. 24.
    D.R. Bes, R.A. Broglia, Nucl. Phys. 80, 289 (1966).CrossRefGoogle Scholar
  25. 25.
    S.G. Nilsson, Mat.-Fys. Medd. Dan. Vidensk. Selsk. 29, 16 (1955).Google Scholar
  26. 26.
    J.P. Boisson, R. Piepenbring, Nucl. Phys. A 168, 385 (1971).ADSCrossRefGoogle Scholar
  27. 27.
    C.M. Baglin, Nucl. Data Sheets 96, 611 (2002).ADSCrossRefGoogle Scholar
  28. 28.
    N.I. Pyatov, Ark. Fys. 36, 667 (1967).Google Scholar
  29. 29.
    M.I. Chernei, N.I. Pyatov, K.M. Zheleznova, Bull. Acad. Sci. USSR (Ser. Fiz.) 31, 550 (1967).Google Scholar
  30. 30.
    M.I. Chernei, N.I. Pyatov, Bull. Acad. Sci. USSR (Ser. Fiz.) 31, 1691 (1967).Google Scholar
  31. 31.
    A.A. Kuliev, N.I. Pyatov, Nucl. Phys. A 106, 689 (1968).ADSCrossRefGoogle Scholar
  32. 32.
    A.A. Kuliev, N.I. Pyatov, Bull. Acad. Sci. USSR (Ser. Fiz.) 32, 831 (1968).Google Scholar
  33. 33.
    M.I. Cristu, O. Dumitrescu, N.I. Pyatov, A. Sandulescu, Nucl. Phys. A 130, 31 (1969).CrossRefADSGoogle Scholar
  34. 34.
    S.K. Abdulvagabova, S.P. Ivanova, N.I. Pyatov, Sov. J. Nucl. Phys. 16, 1209 (1972).Google Scholar
  35. 35.
    S.K. Abdulvagabova, S.P. Ivanova, N.I. Pyatov, Phys. Lett. B 38, 215 (1972).ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Physics, Faculty of ScienceEge UniversityBornova-İzmirTurkey

Personalised recommendations