Consistency tests of Ampcalculator and chiral amplitudes in SU(3) Chiral Perturbation Theory: A tutorial-based approach

  • B. AnanthanarayanEmail author
  • Diganta Das
  • I. Sentitemsu Imsong
Special Article - Tools for Experiment and Theory


Ampcalculator (AMPC) is a Mathematica © based program that was made publicly available some time ago by Unterdorfer and Ecker. It enables the user to compute several processes at one loop (upto O(p 4) in SU(3) chiral perturbation theory. They include computing matrix elements and form factors for strong and non-leptonic weak processes with at most six external states. It was used to compute some novel processes and was tested against well-known results by the original authors. Here we present the results of several thorough checks of the package. Exhaustive checks performed by the original authors are not publicly available, and hence the present effort. Some new results are obtained from the software especially in the kaon odd-intrinsic parity non-leptonic decay sector involving the coupling G 27. Another illustrative set of amplitudes at tree level we provide is in the context of τ-decays with several mesons including quark mass effects, of use to the BELLE experiment. All eight meson-meson scattering amplitudes have been checked. The Kaon-Compton amplitude has been checked and a minor error in the published results has been pointed out. This exercise is a tutorial-based one, wherein several input and output notebooks are also being made available as ancillary files on the arXiv. Some of the additional notebooks we provide contain explicit expressions that we have used for comparison with established results. The purpose is to encourage users to apply the software to suit their specific needs. An automatic amplitude generator of this type can provide error-free outputs that could be used as inputs for further simplification, and in varied scenarios such as applications of chiral perturbation theory at finite temperature, density and volume. This can also be used by students as a learning aid in low-energy hadron dynamics.


Form Factor AMPC Chiral Perturbation Theory Total Amplitude Tree Level Amplitude 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    J. Gasser, H. Leutwyler, Nucl. Phys. B 250, 465 (1985).ADSCrossRefGoogle Scholar
  2. 2.
    J. Gasser, H. Leutwyler, Nucl. Phys. B 250, 517 (1985).ADSCrossRefGoogle Scholar
  3. 3.
    V. Cirigliano, G. Ecker, H. Neufeld, A. Pich, J. Portoles, Rev. Mod. Phys. 84, 399 (2012) arXiv:1107.6001 [hep-ph].ADSCrossRefGoogle Scholar
  4. 4.
    R. Unterdorfer, G. Ecker, JHEP 10, 017 (2005) hep-ph/0507173.ADSCrossRefGoogle Scholar
  5. 5.
    G. Ecker, R. Unterdorfer, Eur. Phys. J. C 24, 535 (2002) hep-ph/0203075.CrossRefGoogle Scholar
  6. 6.
    S. Jadach, Z. Was, R. Decker, J.H. Kuhn, Comput. Phys. Commun. 76, 361 (1993).ADSCrossRefGoogle Scholar
  7. 7.
    O. Shekhovtsova, T. Przedzinski, P. Roig, Z. Was, arXiv:1203.3955 [hep-ph].
  8. 8.
    B. Ananthanarayan, I. Sentitemsu Imsong, J. Phys. G 39, 095002 (2012) arXiv:1207.0567 [hep-ph].ADSCrossRefGoogle Scholar
  9. 9.
    R. Decker, M. Finkemeier, E. Mirkes, Phys. Rev. D 50, 6863 (1994) hep-ph/9310270.ADSCrossRefGoogle Scholar
  10. 10.
    G.J. Aubrecht, II, N. Chahrouri, K. Slanec, Phys. Rev. D 24, 1318 (1981).ADSCrossRefGoogle Scholar
  11. 11.
    BELLE Collaboration (Y. Usuki et al.), Nucl. Phys. Proc. Suppl. 189, 103 (2009).ADSCrossRefGoogle Scholar
  12. 12.
    J. Gasser, H. Leutwyler, Ann. Phys. 158, 142 (1984).MathSciNetADSCrossRefGoogle Scholar
  13. 13.
    G. Colangelo, M. Finkemeier, R. Urech, Phys. Rev. D 54, 4403 (1996) hep-ph/9604279.ADSCrossRefGoogle Scholar
  14. 14.
    N. Kaiser, Nucl. Phys. A 848, 198 (2010) arXiv:1007.5277 [hep-ph].ADSCrossRefGoogle Scholar
  15. 15.
    V. Bernard, N. Kaiser, U.G. Meissner, Nucl. Phys. B 357, 129 (1991).ADSCrossRefGoogle Scholar
  16. 16.
    V. Bernard, N. Kaiser, U.G. Meissner, Phys. Rev. D 44, 3698 (1991).ADSCrossRefGoogle Scholar
  17. 17.
    V. Bernard, N. Kaiser, U.G. Meissner, Nucl. Phys. B 364, 283 (1991).ADSCrossRefGoogle Scholar
  18. 18.
    F. Guerrero, J.A. Oller, Nucl. Phys. B 537, 459 (1999) hep-ph/9805334.ADSCrossRefGoogle Scholar
  19. 19.
    A. Gomez Nicola, J.R. Pelaez, Phys. Rev. D 65, 054009 (2002) hep-ph/0109056.ADSCrossRefGoogle Scholar
  20. 20.
    F. Guerrero, J. Prades, Phys. Lett. B 405, 341 (1997) hep-ph/9702303.ADSCrossRefGoogle Scholar
  21. 21.
    T. Fuchs, B. Pasquini, C. Unkmeir, S. Scherer, Czech. J. Phys. 52, B135 (2002) hep-ph/0010218.Google Scholar
  22. 22.
    G. Ecker, H. Neufeld, A. Pich, Nucl. Phys. B 413, 321 (1994) hep-ph/9307285.ADSCrossRefGoogle Scholar
  23. 23.
    J.F. Donoghue, E. Golowich, B.R. Holstein Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 211992.CrossRefGoogle Scholar
  24. 24.
    J. Bijnens, Int. J. Mod. Phys. A 8, 3045 (1993).ADSCrossRefGoogle Scholar
  25. 25.
    L. Ametller, J. Bijnens, A. Bramon, F. Cornet, Phys. Lett. B 303, 140 (1993) hep-ph/9302219.ADSCrossRefGoogle Scholar
  26. 26.
    L. Ametller, J. Bijnens, A. Bramon, P. Talavera, Phys. Lett. B 400, 370 (1997) hep-ph/9702302.ADSCrossRefGoogle Scholar
  27. 27.
    J. Bijnens, P. Talavera, Nucl. Phys. B 669, 341 (2003) hep-ph/0303103.ADSCrossRefGoogle Scholar
  28. 28.
    J. Bijnens, P. Talavera, JHEP 03, 046 (2002) hep-ph/0203049.ADSCrossRefGoogle Scholar
  29. 29.
    J. Bijnens, F. Cornet, Nucl. Phys. B 296, 557 (1988).ADSCrossRefGoogle Scholar
  30. 30.
    R. Mertig, M. Bohm, A. Denner, Comput. Phys. Commun. 64, 345 (1991).MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • B. Ananthanarayan
    • 1
    Email author
  • Diganta Das
    • 2
  • I. Sentitemsu Imsong
    • 1
  1. 1.Centre for High Energy PhysicsIndian Institute of ScienceBangaloreIndia
  2. 2.The Institute of Mathematical Sciences TaramaniChennaiIndia

Personalised recommendations