High-lying excited states in Gamow Teller strength and their roles in neutrino reactions

  • Myung-Ki Cheoun
  • Eunja Ha
  • Toshitaka Kajino
Regular Article - Theoretical Physics


The Gamow Teller (GT) transition strengths deduced from charge exchange reactions (CEXRs) are very helpful for understanding the nuclear reaction induced by neutrinos, in particular, by the solar neutrino. For further study of supernovae (SNe) neutrinos in the cosmos, one needs to study high-lying GT states around a few tens of MeV region as well as other multipole transitions because of the high energy tail in the neutrino spectra emitted from the neutrino sphere. In this report, we address the importance of the high-lying GT excited states, whose data now become available from various CEXR experiments. For example, GT(± strengths up to 70MeV are successfully extracted by 90Zr(n, p) and 90Zr(p, n) reactions. Our discussions are extended to investigate roles of the high-lying states beyond a few low-lying states known in the old experiment on the reaction induced by SNe neutrinos particularly on 40Ar target. The nucleus was originally exploited to identify the solar neutrino emitted from 8B produced in the pp-chains on the Sun, and now lots of applications for more energetic neutrino detection are under progress. The expected large difference between the cross-sections of \( \nu_{e}^{}\) and \( \bar{{\nu}}_{e}^{}\) reactions on 40Ar , whose differences were anticipated because of the large Q-value in the \( \bar{{\nu}}_{e}^{}\) reaction, is significantly diminished compared to previous results. Our calculations are carried out by the Quasi-particle Random Phase Approximation (QRPA), which takes the neutron-proton pairing into account to the standard proton-neutron QRPA (pnQRPA) where only proton-proton and neutron-neutron pairing correlations are considered.


Solar Neutrino Gamow Teller Neutrino Reaction Charge Exchange Reaction Gamow Teller Strength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    K. Langanke, C.A. Barnes, Adv. Nucl. Phys. 22, 173 (1996)CrossRefGoogle Scholar
  2. 2.
    K. Langanke, Prog. Part. Nucl. Phys. 57, 324 (2006)ADSCrossRefGoogle Scholar
  3. 3.
    W.L. Freedman, M.S. Turner, Rev. Mod. Phys. 75, 1433 (2003)ADSCrossRefGoogle Scholar
  4. 4.
    H. Janka, K. Langanke, A. Marek, G. Martinez-Pinedo, B. Mueller, Phys. Rep. 442, 38 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    D.A. Krauker et al., Phys. Rev. C 45, 2450 (1992)ADSCrossRefGoogle Scholar
  6. 6.
    R.C. Allen et al., Phys. Rev. Lett. 64, 1871 (1990)ADSCrossRefGoogle Scholar
  7. 7.
    LSND Collaboration (C. Athanasopoulos et al.), Phys. Rev. C 55, 2078 (1997)ADSCrossRefGoogle Scholar
  8. 8.
    LSND Collaboration (C. Athanasopoulos et al.), Phys. Rev. C 56, 2806 (1997)ADSCrossRefGoogle Scholar
  9. 9.
    M. Albert et al., Phys. Rev. C 51, R1065 (1995)ADSCrossRefGoogle Scholar
  10. 10.
    KARMEN Collaboration (B.E. Bodmann et al.), Phys. Lett. B 332, 251 (1994)ADSCrossRefGoogle Scholar
  11. 11.
    KARMEN Collaboration (B.A. Armbruster et al.), Phys. Lett. B 423, 15 (1998)ADSCrossRefGoogle Scholar
  12. 12.
    R. Maschuw, Prog. Part. Nucl. Phys. 40, 183 (1998)ADSCrossRefGoogle Scholar
  13. 13.
    S. Rakers, C. Baumer, A.M. van den Berg, B. Davids, D. Frekers, D. De Frenne, E.-W. Grewe, P. Haefner, M.N. Harakeh, S. Hollstein et al., Phys. Rev. C 71, 054313 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    L. Popescu, C. Baumer, A.M. van den Berg, D. Frekers, D. De Frenne, Y. Fujita, E.W. Grewe, P. Haefner, M.N. Harakeh, M. Hunyadi et al., Phys. Rev. C 75, 054312 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    G.M. Fuller, W.C. Haxton, G.C. McLaughlin, Phys. Rev. D 59, 085005 (1999)ADSCrossRefGoogle Scholar
  16. 16.
    K. Langanke, G. Martinez-Pinedo, P. von Neumann-Cosel, A. Richter, Phys. Rev. Lett. 93, 202501 (2004)ADSCrossRefGoogle Scholar
  17. 17.
    G.H. Bertsch, I. Hamamoto, Phys. Rev. C 26, 1323 (1982)ADSCrossRefGoogle Scholar
  18. 18.
    I. Hamamoto, H. Sagawa, Phys. Rev. C 62, 024319 (2000)ADSCrossRefGoogle Scholar
  19. 19.
    G.A. Rijsdijl, W.J. Geurts, G.E. Brand, K. Allaart, W.H. Dickhoff, Phys. Rev. C 48, 1752 (1993)ADSCrossRefGoogle Scholar
  20. 20.
    Shannon T. Cowell, V.R. Pandharipande, Phys. Rev. C 73, 025801 (2006)ADSCrossRefGoogle Scholar
  21. 21.
    T. Wakasa et al., Phys. Rev. C 55, 2909 (1997)ADSCrossRefGoogle Scholar
  22. 22.
    K. Yako et al., Phys. Lett. B 615, 193 (2005)ADSCrossRefGoogle Scholar
  23. 23.
    R.G. Zegers et al., Phys. Rev. C 74, 024309 (2006)ADSCrossRefGoogle Scholar
  24. 24.
    E. Kolbe, K. Langanke, G Martinez-Pinedo, P. Vogel, J. Phys. G 29, 2569 (2003)ADSCrossRefGoogle Scholar
  25. 25.
    A. Heger, E. Kolbe, W.C. Haxton, K. Langanke, G. Martinez-Pinedo, S.E. Woosley, Phys. Lett. B 606, 258 (2005)ADSCrossRefGoogle Scholar
  26. 26.
    T. Yoshida, T. Suzuki, S, Chiba, T. Kajino, H. Yokomukura, K. Kimura, A. Takamura, H. Hartmann, Astro. Phys. J. 686, 448 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    C. Frohlich, P. Hauser, M. Liebendorfer, G. Martinez-Pinedo, F.-K. Thielemann, E. Bravo, N.T. Zinner, W.R. Hix, K. Langanke, A. Mezzacappa et al., Astrophys. J. 637, 415 (2006)ADSCrossRefGoogle Scholar
  28. 28.
    C. Frohlich, Gabriel Martinez-Pinedo, M. Liebendorfer, F.-K. Thielemann, E. Bravo, W.R. Hix, K. Langanke, N.T. Zinner, Phys. Rev. Lett. 96, 142502 (2006)ADSCrossRefGoogle Scholar
  29. 29.
    Jason Pruet, S.E. Woosley, R. Buras, H.-T. Janka, R.D. Hoffman, Astrophys. J. 623, 325 (2005)ADSCrossRefGoogle Scholar
  30. 30.
    Shinya Wanajo, Astrophys. J. 647, 1323 (2006)ADSCrossRefGoogle Scholar
  31. 31.
    Shinya Wanajo, Hans-Thomas Janka, Shigeru Kubono, Astrophys. J. 729, 1 (2011)CrossRefGoogle Scholar
  32. 32.
    S.E. Woosley, D.H. Hartmann, R.D. Hoffmann, W.C. Haxton, Astrophys. J. 356, 272 (1990)ADSCrossRefGoogle Scholar
  33. 33.
    Todd A. Thompson, Adam Burrows, Philip A. Pinto, Astrophys. J. 592, 434 (2003)ADSCrossRefGoogle Scholar
  34. 34.
    T. Suzuki, S. Chiba, T. Yoshida, T. Kajino, T. Otsuka, Phys. Rev. C 74, 034307 (2006)ADSCrossRefGoogle Scholar
  35. 35.
    T. Suzuki, M. Honma, K. Higashiyama, T. Yoshida, T. Kajino, T. Otsuka, H. Umeda, K. Nomoto, Phys. Rev. C 79, 061603(R) (2009)ADSCrossRefGoogle Scholar
  36. 36.
    K. Langanke, G. Martinez-Pinedo, Berndt Muller, H.-Th. Janka, A. Marek, W.R. Hix, A. Juodagalvis, J.M. Sampaio, Phys. Rev. Lett. 100, 011101 (2008)ADSCrossRefGoogle Scholar
  37. 37.
    E. Kolbe, K. Langanke, G. Martinez-Pinedo, Phys. Rev. C 60, 052801 (1999)ADSCrossRefGoogle Scholar
  38. 38.
    J. Toivanen, E. Kolbe, K. Langanke, G. Martinez-Pinedo, P. Vogel, Nucl. Phys. A 694, 395 (2001)ADSCrossRefGoogle Scholar
  39. 39.
    N. Paar, D. Vretenar, T. Marketin, P. Ring, Phys. Rev. C 77, 024608 (2008)ADSCrossRefGoogle Scholar
  40. 40.
    Myung-Ki Cheoun, Eunja Ha, S.Y. Lee, W. So, K.S. Kim, T. Kajino, Phys. Rev. C 81, 028501 (2010)ADSCrossRefGoogle Scholar
  41. 41.
    Myung-Ki Cheoun, Eunja Ha, K.S. Kim, T. Kajino, J. Phys. G 37, 055101 (2010)ADSCrossRefGoogle Scholar
  42. 42.
    Myung-Ki Cheoun, Eunja Ha, T. Hayakawa, S. Chiba, T. Kajino, Phys. Rev. C 82, 035504 (2010)ADSCrossRefGoogle Scholar
  43. 43.
    Myung-Ki Cheoun, Eunja Ha, T. Kajino, Phys. Rev. C 83, 028801 (2011)ADSCrossRefGoogle Scholar
  44. 44.
    E. Ydrefors, K.G. Balasi, T.S. Kosmas, J. Suhonen, Nucl. Phys. A 866, 67 (2011) 878ADSCrossRefGoogle Scholar
  45. 45.
    K.G. Balasi, E. Ydrefors, T.S. Kosmas, Nucl. Phys. A 868, 82 (2011)ADSCrossRefGoogle Scholar
  46. 46.
    V. Tsakstara, T.S. Kosmas, J. Wambach, Prog. Part. Nucl. Phys. 66, 424 (2011)ADSCrossRefGoogle Scholar
  47. 47.
    C. Volpe, N. Auerbach, G. Colo, T. Suzuki, N. Van Giai, Phys. Rev. C 62, 015501 (2000)ADSCrossRefGoogle Scholar
  48. 48.
    M.K. Cheoun, A. Bobyk, Amand Faessler, F. Simkovic, G. Teneva, Nucl. Phys. A 561, 74 (1993)ADSCrossRefGoogle Scholar
  49. 49.
    M.K. Cheoun, A. Bobyk, Amand Faessler, F. Simkovic, G. Teneva, Nucl. Phys. A 564, 329 (1993)ADSCrossRefGoogle Scholar
  50. 50.
    T.W. Donnelly, W.C. Haxton, At. Data Nucl. Data Tables 23, 103 (1979)ADSCrossRefGoogle Scholar
  51. 51.
    J.D. Walecka, Muon Physics, edited by V.H. Huges, C.S. Wu, Vol. II (Academic, New York, 1975)Google Scholar
  52. 52.
    S.M. Grimes et al., Phys. Rev. C 53, 2709 (1996)ADSCrossRefGoogle Scholar
  53. 53.
    Myung-Ki Cheoun, Eunja Ha, T. Hayakawa, Satoshi Chiba, Ko Nakamura, Toshitaka Kajino, Grant J. Mathews, Phys. Rev. C 85, 065807 (2012)ADSCrossRefGoogle Scholar
  54. 54.
    T. Hayakawa, T. Kajino, S. Chiba, G.J. Mathews, Phys. Rev. C 81, 052801(R) (2010)ADSCrossRefGoogle Scholar
  55. 55.
    A. Byelikov et al., Phys. Rev. Lett. 98, 082501 (2007)ADSCrossRefGoogle Scholar
  56. 56.
    T. Hayakawa, K. Nakamura, T. Kajino, S. Chiba, N. Iwamoto, M.K. Cheoun, G.J. Mathews, submitted to Phys. Rev. Lett. (2012)Google Scholar
  57. 57.
    M. Bhattacharya et al., Phys. Rev. C 58, 3677 (1998)ADSCrossRefGoogle Scholar
  58. 58.
    M. Bhattacharya, C.D. Goodman, A. Garcia, Phys. Rev. C 80, 055501 (2009)ADSCrossRefGoogle Scholar
  59. 59.
    E. Caurier, K. Langanke, G. Martinez-Pinedo, F. Nowacki, P. Vogel, Phys. Lett. B 522, 240 (2001)ADSCrossRefGoogle Scholar
  60. 60.
    Paul D. Cottle, Kirby W. Kemper, Physics 5, 49 (2012)CrossRefGoogle Scholar
  61. 61.
    R. Winkler et al., Phys. Rev. Lett. 108, 182501 (2012)ADSCrossRefGoogle Scholar
  62. 62.
    G. Teneva, F. Simkovic, A. Bobyk, M.K. Cheoun, Amand Faessler, S.B. Khadkikar, Nucl. Phys. A 586, 249 (1995)ADSCrossRefGoogle Scholar
  63. 63.
    A. Bortrungo, G. Co', Eur. Phys. J. A 24, S1, 109 (2005)Google Scholar
  64. 64.
    Giampaolo Co', Acta Phys. Pol. B 37, 2235 (2006)Google Scholar
  65. 65.
    Jonathan Angel, Phys. Rev. C 57, 2004 (1998)CrossRefGoogle Scholar
  66. 66.
    A. Rubbia, Nucl. Phys. B 66, 436 (1998)CrossRefGoogle Scholar
  67. 67.
    I. Gil-Botella, A. Rubbia, arXiv:hep-ph/0307244v2 (2008)
  68. 68.
    I. Gil-Botella, A. Rubbia, J. Cosmol. Astropart. Phys. 10, 009 (2003)ADSCrossRefGoogle Scholar
  69. 69.
    E.K. Warburton, Phys. Rev. C 44, 268 (1991)ADSCrossRefGoogle Scholar
  70. 70.
    W. Trinder et al., Phys. Lett. B 415, 211 (1997)ADSCrossRefGoogle Scholar
  71. 71.
    W.E. Ormand, P.M. Puzzochero, P.F. Bortignon, R.A. Broglia, Phys. Lett. 345, 343 (1995)CrossRefGoogle Scholar
  72. 72.
    Y. Shimbara, The 10th International Symposium on Origin of Matter and Evolution of Galaxies, edited by I. Tanihara (AIP, New York, 2010) p. 201Google Scholar
  73. 73.
    M.S. Yousef, V. Rodin, A. Faessler, F. Simkovic, Phys. Rev. C 79, 014314 (2009)ADSCrossRefGoogle Scholar
  74. 74.
    Eunja Ha, Myung-Ki Cheoun, The 10th International Symposium on Origin of Matter and Evolution of Galaxies, edited by I. Tanihara (AIP, New York, 2010) p. 351Google Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Myung-Ki Cheoun
    • 1
  • Eunja Ha
    • 1
  • Toshitaka Kajino
    • 2
    • 3
  1. 1.Department of PhysicsSoongsil UniversitySeoulKorea
  2. 2.National Astronomical ObservatoryMitaka, TokyoJapan
  3. 3.Department of Astronomy, Graduate School of ScienceUniversity of TokyoTokyoJapan

Personalised recommendations