Chiral four-body interactions in nuclear matter

  • N. KaiserEmail author
Regular Article - Theoretical Physics


An exploratory study of chiral four-nucleon interactions in nuclear and neutron matter is performed. The leading-order terms arising from pion-exchange in combination with the chiral 4π-vertex and the chiral NN3π-vertex are found to be very small. Their attractive contribution to the energy per particle stays below 0.6 MeV in magnitude for densities up to ρ = 0.4 fm−3. We consider also the four-nucleon interaction induced by pion-exchange and twofold Δ-isobar excitation of nucleons. For most of the closed four-loop diagrams the occurring integrals over four Fermi spheres can either be solved analytically or reduced to easily manageable one- or two-parameter integrals. After summing the individually large contributions from 3-ring, 2-ring and 1-ring diagrams of alternating signs, one obtains at nuclear matter saturation density ρ 0 = 0.16 fm−3 a moderate contribution of 2.35 MeV to the energy per particle. The curve \(\bar E(\rho )\) rises rapidly with density, approximately with the third power of ρ. In pure neutron matter the analogous chiral four-body interactions lead, at the same density ρ n , to a repulsive contribution that is about half as strong. The present calculation indicates that long-range multi-nucleon forces, in particular those provided by the strongly coupled πNΔ-system with its small mass-gap of 293 MeV, can still play an appreciable role for the equation of state of nuclear and neutron matter.


Nuclear Matter Neutron Matter Fermi Sphere Pure Neutron Matter Normal Nuclear Matter Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    E. Epelbaum, Prog. Part. Nucl. Phys. 57, 654 (2006) and references therein.ADSCrossRefGoogle Scholar
  2. 2.
    E. Epelbaum, H.-W. Hammer, U.-G. Meißner, Rev. Mod. Phys. 81, 1773 (2009).ADSCrossRefGoogle Scholar
  3. 3.
    R. Machleidt, D.R. Entem, Phys. Rep. 503, 1 (2011).ADSCrossRefGoogle Scholar
  4. 4.
    S.K. Bogner, R.J. Furnstahl, A. Schwenk, Prog. Part. Nucl. Phys. 65, 94 (2010).ADSCrossRefGoogle Scholar
  5. 5.
    S.K. Bogner, R.J. Furnstahl, A. Nogga, A. Schwenk, Nucl. Phys. A 763, 59 (2005).ADSCrossRefGoogle Scholar
  6. 6.
    A. Nogga, S.K. Bogner, A. Schwenk, Phys. Rev. C 70, 061002 (2004).ADSCrossRefGoogle Scholar
  7. 7.
    K. Hebeler et al., Phys. Rev. C 83, 031301 (2011).ADSCrossRefGoogle Scholar
  8. 8.
    V. Bernard, E. Epelbaum, H. Krebs, U.-G. Meißner, Phys. Rev. C 77, 064004 (2008).ADSCrossRefGoogle Scholar
  9. 9.
    I. Tews, T. Krüger, K. Hebeler, A. Schwenk, nucl-th/1206.0025 and references therein.Google Scholar
  10. 10.
    E. Epelbaum, Phys. Lett. B 639, 456 (2006).ADSCrossRefGoogle Scholar
  11. 11.
    E. Epelbaum, Eur. Phys. J. A 34, 197 (2007).ADSCrossRefGoogle Scholar
  12. 12.
    D. Rozpedzik et al., Acta Phys. Polon. B 37, 2889 (2006).ADSGoogle Scholar
  13. 13.
    A. Deltuva, A.C. Fonseca, P.U. Sauer, Phys. Lett. B 660, 471 (2008).ADSCrossRefGoogle Scholar
  14. 14.
    S. Fiorilla, N. Kaiser, W. Weise, Nucl. Phys. A 880, 65 (2012).ADSCrossRefGoogle Scholar
  15. 15.
    A. Akmal, V.R. Pandharipande, D.G. Ravenhall, Phys. Rev. C 58, 1804 (1998).ADSCrossRefGoogle Scholar
  16. 16.
    S. Fritsch, N. Kaiser, W. Weise, Nucl. Phys. A 750, 259 (2005).ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Physik Department T39Technische Universität MünchenGarchingGermany

Personalised recommendations