Relativistic mean field model for nuclear matter with non-linear derivative couplings

  • Yanjun ChenEmail author
Regular Article - Theoretical Physics


We apply the non-linear derivative (NLD) model proposed recently by Gaitanos et al. to investigate the properties of nuclear matter and the mass-radius relation of neutron stars as well. Three cases with different energy-dependent non-linear terms in this model are chosen, in which comparison among the obtained results has been made. It is found that the calculated results are sensitive to the non-linear terms in the NLD model.


Neutron Star Symmetry Energy Compression Modulus Saturation Density Symmetric Nuclear Matter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    B.D. Serot, J.D. Walecka, in Advances in Nuclear Physics, edited by J.W. Negele, E. Vogt, Vol. 16 (Plenum Press, New York, 1986) p. 1.Google Scholar
  2. 2.
    P.G. Reinhard, Rep. Prog. Phys. 1, 147 (1989).Google Scholar
  3. 3.
    P. Ring, Prog. Part. Nucl. Phys. 37, 193 (1996).ADSCrossRefGoogle Scholar
  4. 4.
    M. Bender, P.H. Heenen, P.G. Reinhard, Rev. Mod. Phys. 75, 121 (2003).ADSCrossRefGoogle Scholar
  5. 5.
    J. Meng, H. Toki, S.G. Zhou, S.Q. Zhang, W.H. Long, L.S. Geng, Prog. Part. Nucl. Phys. 57, 470 (2006).ADSCrossRefGoogle Scholar
  6. 6.
    J. Boguta, A. Bodmer, Nucl. Phys. A 292, 413 (1977).MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    C. Fuchs, H. Lenske, H.H. Wolter, Phys. Rev. C 52, 3043 (1995).ADSCrossRefGoogle Scholar
  8. 8.
    J. Zimányi, S. Moszkowski, Phys. Rev. C 42, 1416 (1990).ADSCrossRefGoogle Scholar
  9. 9.
    S. Typel, T.V. Chossy, H.H. Wolter, Phys. Rev. C 67, 034002 (2003).ADSCrossRefGoogle Scholar
  10. 10.
    S. Typel, Phys. Rev. C 71, 064301 (2005).ADSCrossRefGoogle Scholar
  11. 11.
    T. Gaitanos, M. Kaskulov, U. Mosel, Nucl. Phys. A 828, 9 (2009).ADSCrossRefGoogle Scholar
  12. 12.
    T. Gaitanos, M. Kaskulov, H. Lenske, Phys. Lett. B 703, 193 (2011).ADSCrossRefGoogle Scholar
  13. 13.
    T. Gaitanos, M. Kaskulov, Nucl. Phys. A 878, 49 (2012).ADSCrossRefGoogle Scholar
  14. 14.
    T. Gaitanos, M. Kaskulov, nucl-th/1206.4821 (2012).Google Scholar
  15. 15.
    P. Danielewicz, R. Lacey, W.G. Lynch, Science 298, 1592 (2002).ADSCrossRefGoogle Scholar
  16. 16.
    M.B. Tsang, Y.X. Zhang, P. Danielewicz, M. Famiano, Z.X. Li, W.G. Lynch, A.W. Steiner, Phys. Rev. Lett. 102, 122701 (2009).ADSCrossRefGoogle Scholar
  17. 17.
    B.A. Li, L.W. Chen, C.M. Ko, Phys. Rep. 464, 113 (2008).ADSCrossRefGoogle Scholar
  18. 18.
    E.D. Cooper, S. Hama, B.C. Clark, R.L. Mercer, Phys. Rev. C 47, 297 (1993).ADSCrossRefGoogle Scholar
  19. 19.
    G. Baym, C. Pethick, P. Sutherland, Astrophys. J. 170, 299 (1971).ADSCrossRefGoogle Scholar
  20. 20.
    P.B. Demorest, T. Pennucci, S.M. Ransom, M.S.E. Roberts, J.W.T. Hessels, Nature 467, 1081 (2010).ADSCrossRefGoogle Scholar
  21. 21.
    A.W. Steiner, J.M. Lattimer, E.F. Brown, nucl-th/1205.6871 (2012).Google Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Physics and Electronic ScienceChangsha University of Science and TechnologyHunanChina

Personalised recommendations