Investigation of peak shapes in the MIBETA experiment calibrations

  • E. Ferri
  • S. Kraft-BermuthEmail author
  • A. Monfardini
  • A. Nucciotti
  • D. Schaeffer
  • M. Sisti
Regular Article - Experimental Physics


In calorimetric neutrino mass experiments, where the shape of a beta decay spectrum has to be precisely measured, the understanding of the detector response function is a fundamental issue. In the MIBETA neutrino mass experiment, the X-ray lines measured with external sources did not have Gaussian shapes, but exhibited a pronounced shoulder towards lower energies. If this shoulder were a general feature of the detector response function, it would distort the beta decay spectrum and thus mimic a non-zero neutrino mass. An investigation was performed to understand the origin of the shoulder and its potential influence on the beta spectrum. First, the peaks were fitted with an analytic function in order to determine quantitatively the amount of events contributing to the shoulder, also depending on the energy of the calibration X-rays. In a second step, Monte Carlo simulations were performed to reproduce the experimental spectrum and to understand the origin of its shape. We conclude that at least part of the observed shoulder can be attributed to a surface effect.


Neutrino Mass Beta Decay Asymmetry Index Calibration Source Exponential Tail 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    C. Enss (Editor), Cryogenic Particle Detection (Springer, Berlin, 2005)Google Scholar
  2. 2.
    C. Arnaboldi et al., Phys. Rev. Lett. 91, 161802 (2003)ADSCrossRefGoogle Scholar
  3. 3.
    M. Sisti et al., Nucl. Instrum. Methods A 520, 125 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    F. Gatti, Nucl. Phys. B 91, 293 (2001)CrossRefGoogle Scholar
  5. 5.
    M. Galeazzi et al., Phys. Rev. C 63, 014302 (2001)ADSCrossRefGoogle Scholar
  6. 6.
    G. Zchornack, Handbook of X-Ray Data (Springer, Berlin, Heidelberg, New York, 2007)Google Scholar
  7. 7. and the ``Physics Reference Manual'' therein
  8. 8.
    C.J. Bland, Appl. Radiat. Isot. 49, 1225 (1998)CrossRefGoogle Scholar
  9. 9.
    G. Bortels, P. Collaers, Appl. Radiat. Isot. 38, 831 (1987)CrossRefGoogle Scholar
  10. 10.
    S. Doniach, M. Sunjic, J. Phys. C 3, 285 (1970)ADSCrossRefGoogle Scholar
  11. 11.
    J. Kawai et al., Phys. Rev. Lett. 57, 988 (1986)ADSCrossRefGoogle Scholar
  12. 12.
    J. Kawai et al., Phys. Rev. A 39, 3686 (1989)ADSCrossRefGoogle Scholar
  13. 13.
    G. Hölzner et al., Phys. Rev. A 56, 4554 (1997)ADSCrossRefGoogle Scholar
  14. 14.
    L.G. Parratt, Phys. Rev. 50, 1 (1936)ADSCrossRefGoogle Scholar
  15. 15.
    M.O. Krause, J.H. Oliver, J. Phys. Chem. Ref. Data 8, 329 (1979)ADSCrossRefGoogle Scholar
  16. 16.
    P. Citrin et al., Phys. Rev. B 10, 1762 (1974)ADSCrossRefGoogle Scholar
  17. 17.
    A. Nucciotti et al., AIP Conf. Proc. 605, 453 (2002)ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • E. Ferri
    • 1
    • 2
  • S. Kraft-Bermuth
    • 3
    Email author
  • A. Monfardini
    • 4
  • A. Nucciotti
    • 1
    • 2
  • D. Schaeffer
    • 5
  • M. Sisti
    • 1
    • 2
  1. 1.Dipartimento di Fisica dell’Università di Milano-BicoccaMilanoItaly
  2. 2.INFNSezione di Milano-BicoccaMilanoItaly
  3. 3.Institut für Atom- und MolekülphysikJustus-Liebig-Universität GießenGießenGermany
  4. 4.Institut Néel, CNRS & Université Joseph Fourier (UJF)GrenobleFrance
  5. 5.ABB AB, Corporate ResearchVästeråsSweden

Personalised recommendations