Advertisement

Missing mass spectroscopy on oxygen isotopes beyond the proton-drip line: mirror symmetry of nuclear shell evolution

  • D. SuzukiEmail author
Review

Abstract

Missing mass spectroscopy of the proton-rich 12O and 13O nuclei was performed via the neutron transfer (p, t and (p, d reactions, respectively, using a 14O beam of 51 MeV/u at GANIL (Grand Accélérateur National d’Ions Lourds). In addition to the ground states, an excited state of 12O at 1.8(4) MeV and two excited states of 13O at 2.8(3) and 4.2(3) MeV were observed. Spin-parity and/or spectroscopic factors were obtained from the comparison of the differential cross-sections to distorted-wave calculations. The excited state of 12O with a suggested spin-parity of 0+ or 2+ has a significantly low excitation energy, indicating that the proton shell closure at Z = 8 vanishes in 12O. The spin-parity of 1/2+ was suggested for the 2.8MeV state, which implies that the proton shell gap is weak in 13O, whereas the large spectroscopic factor extracted from the 14O(p , d reaction indicates that the ground 3/2 state remains dominated by normal p-shell configurations. These features of 12O and 13O have marked similarities with their neutron-rich mirror partners 12Be and 13B, respectively, demonstrating mirror symmetry in the fading of the shell closure at magic numbers 8 near the drip lines.

Keywords

Shell Closure Total Kinetic Energy Spectroscopic Factor Magnetic Rigidity Excitation Energy Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    M. Kobayashi, T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).ADSGoogle Scholar
  2. 2.
    M. Hori et al., Phys. Rev. Lett. 91, 123401 (2003).ADSGoogle Scholar
  3. 3.
    J. Bardeen, L.N. Cooper, J.R. Schrieffer, Phys. Rev. 108, 1175 (1957).MathSciNetADSzbMATHGoogle Scholar
  4. 4.
    A. Bohr, B.R. Mottelson, Nuclear Structure, Vol. I (W.A. Benjamin, New York, 1968).Google Scholar
  5. 5.
    J.B. Ehrman, Phys. Rev. 81, 412 (1951).ADSGoogle Scholar
  6. 6.
    R.G. Thomas, Phys. Rev. 88, 1109 (1952).ADSzbMATHGoogle Scholar
  7. 7.
    Y. Ichikawa et al., Phys. Rev. C 80, 044302 (2009).MathSciNetADSGoogle Scholar
  8. 8.
    A.P. Zuker et al., Phys. Rev. Lett. 89, 142502 (2002).ADSGoogle Scholar
  9. 9.
    J. Ekman et al., Phys. Rev. Lett. 92, 132502 (2004).ADSGoogle Scholar
  10. 10.
    M.A. Bentley et al., Phys. Rev. Lett. 97, 132501 (2006).ADSGoogle Scholar
  11. 11.
    A. Gadea et al., Phys. Rev. Lett. 97, 152501 (2006).ADSGoogle Scholar
  12. 12.
    D. Suzuki et al., Phys. Rev. Lett. 103, 152503 (2009).ADSGoogle Scholar
  13. 13.
    W.D. Knight et al., Phys. Rev. Lett. 52, 2141 (1984).ADSGoogle Scholar
  14. 14.
    S. Tarucha et al., Phys. Rev. Lett. 77, 3613 (1996).ADSGoogle Scholar
  15. 15.
    M.G. Mayer, Phys. Rev. 74, 235 (1948).ADSGoogle Scholar
  16. 16.
    M.G. Mayer, Phys. Rev. 75, 1969 (1949).ADSGoogle Scholar
  17. 17.
    O. Haxel, J.H.D. Jensen, H.E. Suess, Phys. Rev. 75, 1766 (1949).ADSGoogle Scholar
  18. 18.
    D.H. Wilkinson, D.E. Alburger, Phys. Rev. 113, 563 (1959).ADSGoogle Scholar
  19. 19.
    I. Talmi, I. Unna, Phys. Rev. Lett. 4, 469 (1960).ADSGoogle Scholar
  20. 20.
    C. Thibault et al., Phys. Rev. C 12, 644 (1975).ADSGoogle Scholar
  21. 21.
    C. Détraz et al., Nucl. Phys. A 394, 378 (1983).ADSGoogle Scholar
  22. 22.
    D.E. Alburger et al., Phys. Rev. C 17, 1525 (1978).ADSGoogle Scholar
  23. 23.
    C. Détraz et al., Phys. Rev. C 19, 164 (1979).ADSGoogle Scholar
  24. 24.
    D. Guillemaud-Mueller et al., Nucl. Phys. A 426, 37 (1984).ADSGoogle Scholar
  25. 25.
    J.P. Dufour et al., Nucl. Instrum. Methods A 248, 267 (1986).ADSGoogle Scholar
  26. 26.
    B.M. Sherrill et al., Nucl. Instrum. Methods B 56-57, 1106 (1991).ADSGoogle Scholar
  27. 27.
    T. Kubo et al., Nucl. Instrum. Methods B 70, 309 (1992).ADSGoogle Scholar
  28. 28.
    H. Geissel et al., Nucl. Instrum. Methods B 70, 286 (1992).ADSGoogle Scholar
  29. 29.
    T. Kubo et al., IEEE Trans. Appl. Supercond. 17, 1069 (2007).MathSciNetADSGoogle Scholar
  30. 30.
    ISOLDE Collaboration, Nucl. Instrum. Methods B 70, 41 (1992).ADSGoogle Scholar
  31. 31.
    L. Buchmann et al., Nucl. Instrum. Methods B 26, 151 (1987).ADSGoogle Scholar
  32. 32.
    D. Darquennes et al., Phys. Rev. C 42, R804 (1990).ADSGoogle Scholar
  33. 33.
    D.K. Olsen et al., Nucl. Phys. A 570, 243c (1994).ADSGoogle Scholar
  34. 34.
    REX-ISOLDE Collaboration, Hyperfine Interact. 129, 43 (2000).Google Scholar
  35. 35.
    SPIRAL Group, A.C.C. Villari, Nucl. Phys. A 693, 465 (2001).ADSGoogle Scholar
  36. 36.
    T. Motobayashi et al., Phys. Lett. B 346, 9 (1995).ADSGoogle Scholar
  37. 37.
    R.W. Ibbotson et al., Phys. Rev. Lett. 80, 2081 (1998).ADSGoogle Scholar
  38. 38.
    H. Iwasaki et al., Phys. Lett. B 491, 8 (2000).ADSGoogle Scholar
  39. 39.
    O. Sorlin et al., Phys. Rev. Lett. 88, 092501 (2002).ADSGoogle Scholar
  40. 40.
    H. Iwasaki et al., Phys. Lett. B 481, 7 (2000).ADSGoogle Scholar
  41. 41.
    N. Aoi et al., Phys. Rev. Lett. 102, 012502 (2009).ADSGoogle Scholar
  42. 42.
    K. Yoneda et al., Phys. Lett. B 499, 233 (2001).MathSciNetADSGoogle Scholar
  43. 43.
    B. Bastin et al., Phys. Rev. Lett. 99, 022503 (2007).ADSGoogle Scholar
  44. 44.
    N.A. Orr et al., Phys. Lett. B 258, 29 (1991).ADSGoogle Scholar
  45. 45.
    F. Sarazin, Phys. Rev. Lett. 84, 5062 (2000).ADSGoogle Scholar
  46. 46.
    A. Navin et al., Phys. Rev. Lett. 85, 266 (2000).ADSGoogle Scholar
  47. 47.
    V. Guimaraes et al., Phys. Rev. C 61, 064609 (2000).ADSGoogle Scholar
  48. 48.
    S.D. Pain et al., Phys. Rev. Lett. 96, 032502 (2006).ADSGoogle Scholar
  49. 49.
    L.A. Riley et al., Phys. Rev. C 79, 051303(R) (2009).ADSGoogle Scholar
  50. 50.
    T. Suzuki, R. Fujimoto, T. Otsuka, Phys. Rev. C 67, 044302 (2003).ADSGoogle Scholar
  51. 51.
    T. Otsuka et al., Phys. Rev. Lett. 95, 232502 (2005).ADSGoogle Scholar
  52. 52.
    G.A. Lalazissis et al., Phys. Lett. B 418, 7 (1998).ADSGoogle Scholar
  53. 53.
    I. Hamamoto, Nucl. Phys. A 731, 211 (2004).ADSGoogle Scholar
  54. 54.
    H. Sagawa, B.A. Brown, H. Esbensen, Phys. Lett. B 309, 1 (1993).ADSGoogle Scholar
  55. 55.
    N. Itagaki, S. Okabe, K. Ikeda, Phys. Rev. C 62, 034301 (2000).ADSGoogle Scholar
  56. 56.
    Y. Kanada-En’yo, H. Horiuchi, Phys. Rev. C 68, 014319 (2003).ADSGoogle Scholar
  57. 57.
    S. Shimoura et al., Phys. Lett. B 560, 31 (2003).ADSGoogle Scholar
  58. 58.
    N. Aoi et al., Phys. Rev. C 66, 014301 (2002).ADSGoogle Scholar
  59. 59.
    C.J. Guess et al., Phys. Rev. C 80, 024305 (2009).ADSGoogle Scholar
  60. 60.
    H. Iwasaki et al., Phys. Rev. Lett. 102, 202502 (2009).ADSGoogle Scholar
  61. 61.
    F. Ajzenberg-Selove, Nucl. Phys. A 523, 1 (1991).ADSGoogle Scholar
  62. 62.
    G.J. KeKelis et al., Phys. Rev. C 17, 1929 (1978).ADSGoogle Scholar
  63. 63.
    S. Mordechai et al., Phys. Rev. C 32, 999 (1985).ADSGoogle Scholar
  64. 64.
    R.A. Kryger et al., Phys. Rev. Lett. 74, 860 (1995).ADSGoogle Scholar
  65. 65.
    R. McPherson et al., Phys. Rev. 140, B1513 (1965).ADSGoogle Scholar
  66. 66.
    J.E. Esterl et al., Phys. Lett. B 33, 287 (1970).ADSGoogle Scholar
  67. 67.
    K. Asahi et al., Phys. Rev. C 41, 358 (1990).ADSGoogle Scholar
  68. 68.
    H.H. Knudsen et al., Phys. Rev. C 72, 044312 (2005).ADSGoogle Scholar
  69. 69.
    K. Matsuta et al., Phys. Lett. B 459, 81 (1999).ADSGoogle Scholar
  70. 70.
    T. Teranishi et al., Nucl. Phys. A 718, 207c (2003).ADSGoogle Scholar
  71. 71.
    B.B. Skorodumov et al., Phys. Rev. C 75, 024607 (2007).ADSGoogle Scholar
  72. 72.
    A.A. Korsheninnikov et al., Phys. Lett. B 316, 38 (1993).ADSGoogle Scholar
  73. 73.
    J.H. Kelley et al., Phys. Rev. C 56, R1206 (1997).ADSGoogle Scholar
  74. 74.
    F. Maréchal et al., Phys. Rev. C 60, 034615 (1999).ADSGoogle Scholar
  75. 75.
    F. Maréchal et al., Phys. Rev. C 60, 064623 (1999).ADSGoogle Scholar
  76. 76.
    E. Khan et al., Phys. Lett. B 490, 45 (2000).ADSGoogle Scholar
  77. 77.
    A. Lagoyannis et al., Phys. Lett. B 518, 27 (2001).ADSGoogle Scholar
  78. 78.
    C. Jouanne, Phys. Rev. C 72, 014308 (2005).ADSGoogle Scholar
  79. 79.
    E. Becheva et al., Phys. Rev. Lett. 96, 012501 (2006).ADSGoogle Scholar
  80. 80.
    F. Skaza et al., Phys. Lett. B 619, 82 (2005).ADSGoogle Scholar
  81. 81.
    F. Skaza et al., Phys. Rev. C 73, 044301 (2006).ADSGoogle Scholar
  82. 82.
    L. Gaudefroy et al., Phys. Rev. Lett. 97, 092501 (2006).ADSGoogle Scholar
  83. 83.
    N. Keeley et al., Phys. Lett. B 646, 222 (2007).ADSGoogle Scholar
  84. 84.
    J. Lee et al., Phys. Rev. Lett. 104, 112701 (2010).ADSGoogle Scholar
  85. 85.
    K. Wimmer et al., Phys. Rev. Lett. 105, 252501 (2010).ADSGoogle Scholar
  86. 86.
    E. Pollacco et al., Eur. Phys. J. A 25, 287 (2005).Google Scholar
  87. 87.
    A. Joubert, Proceedings of the Second Conference of the IEEE Particle Accelerator (IEEE, 1991) 594.Google Scholar
  88. 88.
    R. Anne, Nucl. Instrum. Methods B 126, 279 (1997).ADSGoogle Scholar
  89. 89.
    R. Rebmeister, Report No. CRN/PN, 1983-16 (CNRS Strasbourg Cent. Phys. Nucl., 1983).Google Scholar
  90. 90.
    O.B. Tarasov, D. Bazin, Nucl. Instrum. Methods B 266, 4657 (2008).ADSGoogle Scholar
  91. 91.
    L. Bianchi et al., Nucl. Instrum. Methods A 276, 509 (1989).ADSGoogle Scholar
  92. 92.
    P. Dolégiéviez et al., Nucl. Instrum. Methods A 564, 32 (2006).ADSGoogle Scholar
  93. 93.
    S. Ottini-Hustache et al., Nucl. Instrum. Methods A 431, 476 (1999).ADSGoogle Scholar
  94. 94.
    Y. Blumenfeld et al., Nucl. Instrum. Methods A 421, 471 (1999).ADSGoogle Scholar
  95. 95.
    P. Baron et al., Nucl. Science Symp. Record. IEEE 1, 386 (2003).ADSGoogle Scholar
  96. 96.
    K. Lau, J. Pyrlik, Nucl. Instrum. Methods A 366, 298 (1995).ADSGoogle Scholar
  97. 97.
    F.D. Becchetti et al., Nucl. Instrum. Methods 138, 93 (1976).ADSGoogle Scholar
  98. 98.
    F. Hubert et al., At. Data Nucl. Data Tab. 46, 1 (1990).ADSGoogle Scholar
  99. 99.
    J.F. Ziegler, The Stopping and Range of Ions in Solids (Pergamon Press, New York, 1985).Google Scholar
  100. 100.
    J.C. Hardy et al., Phys. Rev. Lett. 25, 298 (1970).ADSGoogle Scholar
  101. 101.
    D.G. Fleming et al., Nucl. Phys. A 162, 225 (1971).ADSGoogle Scholar
  102. 102.
    J.L. Snelgrove, E. Kashy, Phys. Rev. 187, 1246 (1969).ADSGoogle Scholar
  103. 103.
    GEANT4 Collaboration, Nucl. Instrum. Methods A 506, 250 (2003).ADSGoogle Scholar
  104. 104.
    I.J. Thompson, Comput. Phys. Rep. 7, 167 (1998).ADSGoogle Scholar
  105. 105.
    A.J. Koning, J.P. Delaroche, Nucl. Phys. A 713, 231 (2003).ADSGoogle Scholar
  106. 106.
    F.D. Becchetti, G.W. Greenlees, Polarization Phenomena in Nuclear Reactions (The University of Wisconsin Press, Madison, Wisconsin, 1971).Google Scholar
  107. 107.
    D.Y. Pang et al., Phys. Rev. C 79, 024615 (2009).ADSGoogle Scholar
  108. 108.
    P.D. Kunz, Computer code DWUCK4, University of Corolado, unpublished.Google Scholar
  109. 109.
    P.J.A. Buttle, L.J.B. Goldfarb, Proceedings of the Physical Society, Vol. 83 (1964) p. 701.Google Scholar
  110. 110.
    M. Yasue et al., Nucl. Phys. A 509, 141 (1990).ADSGoogle Scholar
  111. 111.
    R.L. Varner et al., Phys. Rep. 201, 57 (1991).ADSGoogle Scholar
  112. 112.
    W.W. Daehnick, J.D. Childs, Z. Vrcelj, Phys. Rev. C 21, 2253 (1980).ADSGoogle Scholar
  113. 113.
    P.D. Kunz, Computer code DWUCK5, University of Corolado, unpublished. .Google Scholar
  114. 114.
    J.P. Schiffer et al., Phys. Rev. 164, 1274 (1967).ADSGoogle Scholar
  115. 115.
    B.B. Back et al., Phys. Rev. Lett. 104, 132501 (2010).ADSGoogle Scholar
  116. 116.
    P.A. Seidl et al., Phys. Rev. C 30, 1076 (1984).ADSGoogle Scholar
  117. 117.
    H. Ward et al., Phys. Rev. Lett. 70, 3209 (1993).ADSGoogle Scholar
  118. 118.
    G.R. Satchler, Direct Nuclear Reactions (Oxford University Press, Oxford, 1983).Google Scholar
  119. 119.
    J. Bommer et al., Nucl. Phys. A 172, 618 (1971).ADSGoogle Scholar
  120. 120.
    W. Kretschmer et al., Nucl. Phys. A 333, 13 (1980).ADSGoogle Scholar
  121. 121.
    T. Teranishi et al., Phys. Lett. B 650, 129 (2007).ADSGoogle Scholar
  122. 122.
    R.J. Peterson et al., Nucl. Phys. A 425, 469 (1984).ADSGoogle Scholar
  123. 123.
    S. Ota et al., Phys. Lett. B 666, 311 (2008).ADSGoogle Scholar
  124. 124.
    H.T. Fortune, R. Sherr, Phys. Rev. C 74, 024301 (2006).ADSGoogle Scholar
  125. 125.
    P. Descouvemont, D. Baye, Phys. Lett. B 505, 71 (2001).ADSGoogle Scholar
  126. 126.
    Y. Kanada-En’yo, Phys. Rev. C 66, 011303(R) (2002).ADSGoogle Scholar
  127. 127.
    Y. Kanada-En’yo et al., Prog. Theor. Phys. 120, 917 (2008).ADSGoogle Scholar
  128. 128.
    M.F. Jager et al., Phys. Rev. C 86, 011304(R) (2012).ADSGoogle Scholar
  129. 129.
    A. Matta, Doctoral thesis (Université de Paris-Sud, Orsay, 2012).Google Scholar
  130. 130.
    J.A. Dueñas et al., Nucl. Instrum. Methods A 676, 70 (2012).ADSGoogle Scholar
  131. 131.
    C.E. Demonchy et al., Nucl. Instrum. Methods A 583, 341 (2007).ADSGoogle Scholar
  132. 132.
    D. Suzuki et al., Nucl. Instrum. Methods A 691, 39 (2012).ADSGoogle Scholar
  133. 133.
    R. Raabe, ACTAR Collaboration, AIP Conf. Proc. 1165, 339 (2009).ADSGoogle Scholar
  134. 134.
    S. Gales, Prog. Part. Nucl. Phys. 59, 22 (2007).ADSGoogle Scholar
  135. 135.
    M. Lindroos et al., Nucl. Instrum. Methods B 266, 4687 (2008).ADSGoogle Scholar
  136. 136.
    D. Leitner, Proceedings of SRF2011, Chicago, USA, 2011, paper THIOB03, p. 674, http://accelconf.web.cern.ch/accelconf/SRF2011.
  137. 137.
    R. York, Proceedings of LINAC10, Tsukuba, Japan, 2010, paper MOP046, p. 160, http://accelconf.web.cern.ch/AccelConf/LINAC2010.

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Institut de Physique Nucléaire (IPN), IN2P3-CNRSUniversité de Paris-SudOrsayFrance

Personalised recommendations