Advertisement

Shell model study on the astrophysical neutron capture of 8Li

  • Hai-Liang MaEmail author
  • Bao-Guo Dong
  • Yu-Liang Yan
  • Xi-Zhen Zhang
Regular Article - Theoretical Physics

Abstract

The astrophysical important neutron capture of 8Li is investigated by combining the shell model and potential model. Three effective interactions, SFO, PSDMK2 and PSDWBP are used to calculate the spectroscopic factors and reaction widths. For the resonant capture from 8Li to the first continuum state of 9Li , the three effective interactions give similar neutron partial widths, and they are well compared with the experimental results. However, the calculated photon widths are over 5 times less than the previous estimate. This will make the substantial difference that, at high temperature, the direct capture mechanism still dominates. The calculated capture rates generally agree well with the experimental data. The uncertainty of calculated cross-sections and capture rates mainly results from the different prediction of spectroscopic factors for the three effective interactions. The total neutron capture rates in our calculations are less than 4300 cm3 mole−1 s−1 for T 9 < 5 which confirms that the main reaction flow will proceed through the reaction 8Li (α, n) 11B in the stellar environments.

Keywords

Shell Model Capture Rate Neutron Capture Spectroscopic Factor Direct Capture 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    E. Witten, Phys. Rev. D 30, 272 (1984).MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    T. Rauscher, J.H. Applegate, J.J. Cowan, F.-K. Thielemann, M. Wiescher, Astrophys. J. 429, 499 (1994).ADSCrossRefGoogle Scholar
  3. 3.
    T. Kajino, R.N. Boyd, Astrophys. J. 359, 267 (1990).ADSCrossRefGoogle Scholar
  4. 4.
    M. Terasawa, K. Sumiyoshi, T. Kajino, G.J. Mathews, I. Tanihata, Astrophys. J. 562, 470 (2001) arXiv:astro-ph/0107368.ADSCrossRefGoogle Scholar
  5. 5.
    S. Rosswog, C. Freiburghaus, F.-K. Thielemann, Nucl. Phys. A 688, 344 (2001).ADSCrossRefGoogle Scholar
  6. 6.
    P.D. Zecher et al., Phys. Rev. C 57, 959 (1998).ADSCrossRefGoogle Scholar
  7. 7.
    H. Kobayashi et al., Phys. Rev. C 67, 015806 (2003).ADSCrossRefGoogle Scholar
  8. 8.
    Z.H. Li et al., Phys. Rev. C 71, 052801 (2005).ADSCrossRefGoogle Scholar
  9. 9.
    V. Guimarães et al., Phys. Rev. C 75, 054602 (2007).ADSCrossRefGoogle Scholar
  10. 10.
    P. Descouvemont, Astrophys. J. 405, 518 (1993).ADSCrossRefGoogle Scholar
  11. 11.
    R.A. Malaney, W.A. Fowler, Astrophys. J. 345, L5 (1989).ADSCrossRefGoogle Scholar
  12. 12.
    C.A. Bertulani, J. Phys. G: Nucl. Part. Phys. 25, 1959 (1999).ADSCrossRefGoogle Scholar
  13. 13.
    H. Herndl, Reaction Rates of neutron capture by Li- and Be-isotopes, in Proceedings of the International Conference “International Workshop on Physics of Unstabfle Nuclear Beams”: Topics on the Structure and Interactions of Nuclei Far from the Stability Line, edited by M.S.H. Carlos, A. Bertulani, L. Felipe Canto (World Scientific, 1996) arXiv:nucl-th/9609041.
  14. 14.
    P. Banerjee, R. Chatterjee, R. Shyam, Phys. Rev. C 78, 035804 (2008).ADSCrossRefGoogle Scholar
  15. 15.
    N.J. Stone, At. Data Nucl. Data Tables 90, 75 (2005).ADSCrossRefGoogle Scholar
  16. 16.
    D. Millener, D. Kurath, Nucl. Phys. A 255, 315 (1975).ADSCrossRefGoogle Scholar
  17. 17.
    T. Suzuki, R. Fujimoto, T. Otsuka, Phys. Rev. C 67, 044302 (2003).ADSCrossRefGoogle Scholar
  18. 18.
    E.K. Warburton, B.A. Brown, Phys. Rev. C 46, 923 (1992).ADSCrossRefGoogle Scholar
  19. 19.
    B.A. Brown, W.D.M. Rae, MSU-NSCL Report, 2007.Google Scholar
  20. 20.
    D. Millener, D. Kurath, Nucl. Phys. A 255, 315 (1975).ADSCrossRefGoogle Scholar
  21. 21.
    T.T.S. Kuo, Nucl. Phys. A 103, 71 (1967).ADSCrossRefGoogle Scholar
  22. 22.
    T. Otsuka et al., Phys. Rev. Lett. 87, 082502 (2001).ADSCrossRefGoogle Scholar
  23. 23.
    D. Gloeckner, R. Lawson, Phys. Lett. B 53, 313 (1974).ADSCrossRefGoogle Scholar
  24. 24.
    G. Breit, E. Wigner, Phys. Rev. 49, 519 (1936).ADSCrossRefzbMATHGoogle Scholar
  25. 25.
    D.R. Tilley, J.H. Kelley, J.L. Godwin, D.J. Millener, J.E. Purcell, C.G. Sheu, H.R. Wellera, Nucl. Phys. A 745, 155 (2004).ADSCrossRefGoogle Scholar
  26. 26.
    C. Bertulani, Comput. Phys. Commun. 156, 123 (2003).ADSCrossRefGoogle Scholar
  27. 27.
    A.H. Wuosmaa et al., Phys. Rev. Lett. 94, 082502 (2005).ADSCrossRefGoogle Scholar
  28. 28.
    M.B. Tsang, J. Lee, W.G. Lynch, Phys. Rev. Lett. 95, 222501 (2005).ADSCrossRefGoogle Scholar
  29. 29.
    J. Lee, M.B. Tsang, W.G. Lynch, Phys. Rev. C 75, 064320 (2007).ADSCrossRefGoogle Scholar
  30. 30.
    W.A. Fowler, G.R. Caughlan, B.A. Zimmerman, Annu. Rev. Astron. Astrophys. 5, 525 (1967).ADSCrossRefGoogle Scholar
  31. 31.
    Z. Mao, A. Champagne, Nucl. Phys. A 522, 568 (1991).ADSCrossRefGoogle Scholar
  32. 32.
    Y. Mizoi et al., Phys. Rev. C 62, 065801 (2000).ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Hai-Liang Ma
    • 1
    Email author
  • Bao-Guo Dong
    • 1
  • Yu-Liang Yan
    • 1
  • Xi-Zhen Zhang
    • 1
  1. 1.Department of Nuclear PhysicsChina Institute of Atomic EnergyBeijingChina

Personalised recommendations