Advertisement

On kinematical constraints in boson-boson systems

  • M. F. M. LutzEmail author
  • I. Vidaña
Special Article - Tools for Experiment and Theory

Abstract

We consider the scattering of two bosons with negative parity and spin 0 or 1. Starting from helicity partial-wave scattering amplitudes we derive transformations that eliminate all kinematical constraints. Such amplitudes are expected to satisfy partial-wave dispersion relations and therefore provide a suitable basis for data analysis and the construction of effective field theories. Our derivation relies on a decomposition of the various scattering amplitudes into suitable sets of invariant functions. A novel algebra was developed that permits the efficient computation of such functions in terms of computer algebra codes.

Keywords

Invariant Function Kinematical Constraint Transformation Matrice Helicity State Projection Tensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    A. Gasparyan, M.F.M. Lutz, Nucl. Phys. A 848, 126 (2010) 1003.3426.ADSCrossRefGoogle Scholar
  2. 2.
    I.V. Danilkin, A.M. Gasparyan, M.F.M. Lutz, Phys. Lett. B 697, 147 (2011) 1009.5928.ADSCrossRefGoogle Scholar
  3. 3.
    I.V. Danilkin, L.I.R. Gil, M.F.M. Lutz, Phys. Lett. B 703, 504 (2011) 1106.2230.ADSCrossRefGoogle Scholar
  4. 4.
    M. Jacob, G.C. Wick, Ann. Phys. 7, 404 (1959).MathSciNetADSCrossRefzbMATHGoogle Scholar
  5. 5.
    G.F. Chew, M.L. Goldberger, F.E. Low, Y. Nambu, Phys. Rev. 106, 1345 (1957).MathSciNetADSCrossRefzbMATHGoogle Scholar
  6. 6.
    N. Nakanishi, Phys. Rev. 126, 1225 (1962).MathSciNetADSCrossRefzbMATHGoogle Scholar
  7. 7.
    F.A. Berends, A. Donnachie, D.L. Weaver, Nucl. Phys. B 4, 1 (1967).ADSCrossRefGoogle Scholar
  8. 8.
    M. Lutz, Nucl. Phys. A 677, 241 (2000) nucl-th/9906028.ADSCrossRefGoogle Scholar
  9. 9.
    M.F.M. Lutz, G. Wolf, B. Friman, Nucl. Phys. A 706, 431 (2002) 765.ADSCrossRefGoogle Scholar
  10. 10.
    M.F.M. Lutz, E.E. Kolomeitsev, Nucl. Phys. A 700, 193 (2002) nucl-th/0105042.ADSCrossRefGoogle Scholar
  11. 11.
    M.F.M. Lutz, C.L. Korpa, Nucl. Phys. A 700, 309 (2002) nucl-th/0105067.ADSCrossRefGoogle Scholar
  12. 12.
    M.F.M. Lutz, C.L. Korpa, M. Moller, Nucl. Phys. A 808, 124 (2008) 0707.1283.ADSCrossRefGoogle Scholar
  13. 13.
    C.L. Korpa, M.F.M. Lutz, F. Riek, Phys. Rev. C 80, 024901 (2009) 0809.4604.ADSCrossRefGoogle Scholar
  14. 14.
    M. Lutz, E. Kolomeitsev, Nucl. Phys. A 730, 392 (2004) nucl-th/0307039.ADSCrossRefGoogle Scholar
  15. 15.
    S. Stoica, M.F.M. Lutz, O. Scholten, Phys. Rev. D 84, 125001 (2011) 1106.5619.ADSCrossRefGoogle Scholar
  16. 16.
    J.S. Ball, Phys. Rev. 124, 2014 (1961).MathSciNetADSCrossRefzbMATHGoogle Scholar
  17. 17.
    A.O. Barut, I. Muzinich, D.N. Williams, Phys. Rev. 130, 442 (1963).MathSciNetADSCrossRefzbMATHGoogle Scholar
  18. 18.
    Y. Hara, Phys. Rev. 136, B507 (1964).MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    J.D. Jackson, G.E. Hite, Phys. Rev. 169, 1248 (1968).ADSCrossRefGoogle Scholar
  20. 20.
    L.-L.C. Wang, Phys. Rev. 142, 1187 (1966).ADSCrossRefGoogle Scholar
  21. 21.
    J. Franklin, Phys. Rev. 170, 1606 (1968).ADSCrossRefGoogle Scholar
  22. 22.
    M.D. Scadron, H.F. Jones, Phys. Rev. 173, 1734 (1968).ADSCrossRefGoogle Scholar
  23. 23.
    G. Cohen-Tannoudji, A. Morel, H. Navelet, Ann. Phys. 46, 239 (1968).ADSCrossRefGoogle Scholar
  24. 24.
    W.A. Bardeen, W.K. Tung, Phys. Rev. 173, 1423 (1968).ADSCrossRefGoogle Scholar
  25. 25.
    S.U. Chung, Phys. Rev. D 48, 1225 (1993).ADSCrossRefGoogle Scholar
  26. 26.
    S.-U. Chung, J. Friedrich, Phys. Rev. D 78, 074027 (2008) 0711.3143.ADSCrossRefGoogle Scholar
  27. 27.
    PANDA Collaboration (M.F.M. Lutz), (2009) 0903.3905.Google Scholar
  28. 28.
    S. Mandelstam, Phys. Rev. 112, 1344 (1958).MathSciNetADSCrossRefGoogle Scholar
  29. 29.
    M.F.M. Lutz, M. Soyeur, Nucl. Phys. A 813, 14 (2008) 0710.1545.ADSCrossRefGoogle Scholar
  30. 30.
    T.H. West, Comput. Phys. Commun. 77, 286 (1993).ADSCrossRefGoogle Scholar
  31. 31.
    A.L. Bondarev, Theor. Math. Phys. 101, 1376 (1994) hep-ph/9701329.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.GSI Helmholtzzentrum für Schwerionenforschung GmbHDarmstadtGermany
  2. 2.Centro de Física Computacional. Department of PhysicsUniversity of CoimbraCoimbraPortugal

Personalised recommendations