Advertisement

Shear viscosity of a hot pion gas

  • R. Lang
  • N. Kaiser
  • W. Weise
Regular Article - Theoretical Physics

Abstract

The shear viscosity of an interacting pion gas is studied using the Kubo formalism as a microscopic description of thermal systems close to global equilibrium. We implement the skeleton expansion in order to approximate the retarded correlator of the viscous part of the energy-momentum tensor. After exploring this in 4 theory we show how the skeleton expansion can be consistently applied to pions in chiral perturbation theory. The shear viscosity η is determined by the spectral width, or equivalently, the mean free path of pions in the heat bath. We derive a new analytical result for the mean free path which is well conditioned for numerical evaluation and discuss the temperature and pion-mass dependence of the mean free path and the shear viscosity. The ratio η/s of the interacting pion gas exceeds the lower bound 1/4π from AdS/CFT correspondence.

Keywords

Shear Viscosity Spectral Width Entropy Density Chiral Perturbation Theory Chiral Limit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    BRAHMS Collaboration (I. Arsene et al.), Nucl. Phys. A 757, 1 (2005).ADSCrossRefGoogle Scholar
  2. 2.
    PHENIX Collaboration (K. Adcox et al.), Nucl. Phys. A 757, 184 (2005).ADSCrossRefGoogle Scholar
  3. 3.
    PHOBOS Collaboration (B.B. Back et al.), Nucl. Phys. A 757, 28 (2005).ADSCrossRefGoogle Scholar
  4. 4.
    STAR Collaboration (J. Adams et al.), Nucl. Phys. A 757, 102 (2005).ADSCrossRefGoogle Scholar
  5. 5.
    U.W. Heinz, J. Phys. Conf. Ser. 50, 230 (2005).ADSCrossRefGoogle Scholar
  6. 6.
    P. Romatschke, U. Romatschke, Phys. Rev. Lett. 99, 172301 (2007).ADSCrossRefGoogle Scholar
  7. 7.
    M. Luzum, P. Romatschke, Phys. Rev. C 78, 034915 (2008).ADSCrossRefGoogle Scholar
  8. 8.
    N. Armesto et al., J. Phys. G: Nucl. Part. Phys. Conf. Ser. 35, 054001 (2008).CrossRefGoogle Scholar
  9. 9.
    G. Kestin. U.W. Heinz, Eur. Phys. J. C 61, 545 (2008).ADSCrossRefGoogle Scholar
  10. 10.
    ALICE Collaboration (K. Aamodt et al.), Phys. Rev. Lett. 108, 252302 (2010).ADSCrossRefGoogle Scholar
  11. 11.
    ALICE Collaboration (K. Aamodt et al.), Phys. Lett. B 696, 30 (2011).ADSCrossRefGoogle Scholar
  12. 12.
    ALICE Collaboration (K. Aamodt et al.), Phys. Lett. B 708, 249 (2012).ADSCrossRefGoogle Scholar
  13. 13.
    E. Nakano, J.-W. Chen, Phys. Lett. B 347, 371 (2007).Google Scholar
  14. 14.
    E. Wang, U.W. Heinz, Phys. Rev. D 53, 5978 (1996).ADSCrossRefGoogle Scholar
  15. 15.
    A.B. Larionov, O. Buss, K. Gallmeister, U. Mosel, Phys. Rev. C 76, 044909 (2007).ADSCrossRefGoogle Scholar
  16. 16.
    H. Liu, D.-F. Hou, J.-R. Li, Commun. Theor. Phys. 50, 429 (2006).ADSGoogle Scholar
  17. 17.
    M. Iwasaki, H. Ohnishi, T. Fukutome, J. Phys. G: Nucl. Part. Phys. 35, 035003 (2008).ADSCrossRefGoogle Scholar
  18. 18.
    K. Haglin, S. Pratt, Phys. Lett. B 328, 255 (1994).ADSCrossRefGoogle Scholar
  19. 19.
    R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957).MathSciNetADSCrossRefGoogle Scholar
  20. 20.
    K. Yagi, T. Hatsuda, Y. Miake, Quark-Gluon Plasma (Cambridge, 2008).Google Scholar
  21. 21.
    S. Weinberg, Gravitation and Cosmology (John Wiley & Sons, 1972).Google Scholar
  22. 22.
    A. Muronga, Heavy Ion Phys. 15, 337 (2002).CrossRefGoogle Scholar
  23. 23.
    J.D. Bjorken, Phys. Rev. D 27, 140 (1983).ADSCrossRefGoogle Scholar
  24. 24.
    A. Hosoya, M.A. Sakagami, M. Takao, Ann. Phys. 154, 229 (1984).MathSciNetADSCrossRefGoogle Scholar
  25. 25.
    D.N. Zubarev, Nonequilibrium Statistical Thermodynamics (Plenum, NY, 1974).Google Scholar
  26. 26.
    P. Danielewicz, M. Gyulassy, Phys. Rev. D 31, 53 (1985).ADSCrossRefGoogle Scholar
  27. 27.
    J.L. Hung, Phys. Rev. D 45, 1217 (1992).MathSciNetCrossRefGoogle Scholar
  28. 28.
    S. Jeon, Phys. Rev. D 52, 3591 (1995).ADSCrossRefGoogle Scholar
  29. 29.
    S. Jeon, L.G. Yaffe, Phys. Rev. D 53, 5799 (1996).ADSCrossRefGoogle Scholar
  30. 30.
    W.J. Moore, Physical Chemistry (Longmans, London, 1958).Google Scholar
  31. 31.
    Masaharu Iwasaki, Hiromasa Ohnishi, Takahiko Fukutome, J. Phys. G: Nucl. Part. Phys. 35, 035003 (2008).ADSCrossRefGoogle Scholar
  32. 32.
    J. Gasser, H. Leutwyler, Phys. Lett. B 188, 477 (1987).ADSCrossRefGoogle Scholar
  33. 33.
    P. Gerber, H. Leutwyler, Nucl. Phys. B 321, 387 (1989).ADSCrossRefGoogle Scholar
  34. 34.
    Y. Aoki, Z. Fodor, S.D. Katz, K.K. Szabo, Phys. Lett. B 643, 46 (2006).ADSCrossRefGoogle Scholar
  35. 35.
    A. Bazavov et al., Phys. Rev. D 80, 014504 (2009).ADSCrossRefGoogle Scholar
  36. 36.
    M. Cheng et al., Phys. Rev. D 81, 054510 (2010).ADSCrossRefGoogle Scholar
  37. 37.
    J.L. Goity, H. Leutwyler, Phys. Lett. B 228, 517 (1989).ADSCrossRefGoogle Scholar
  38. 38.
    J. Maldacena, Int. J. Theor. Phys. 38, 1113 (1999).MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    P.K. Kovtun, D.T. Son, A.O. Starinets, Phys. Lett. 94, 111601 (2005).CrossRefGoogle Scholar
  40. 40.
    R.A. Lacey et al., Phys. Rev. Lett. 98, 092301 (2007).ADSCrossRefGoogle Scholar
  41. 41.
    T.D. Cohen, Phys. Rev. Lett. 99, 021602 (2007).MathSciNetADSCrossRefGoogle Scholar
  42. 42.
    A. Rebhan, D. Steineder, Phys. Rev. Lett. 108, 021601 (2012).ADSCrossRefGoogle Scholar
  43. 43.
    D. Fernández-Fraile, A. Gómez Nicola, Eur. Phys. J. A 31, 848 (2006).ADSCrossRefGoogle Scholar
  44. 44.
    D. Fernández-Fraile, A. Gómez Nicola, Eur. Phys. J. C 62, 37 (2008).CrossRefGoogle Scholar
  45. 45.
    G. Aarts, J.M.M. Resco, Phys. Rev. D 68, 085009 (2003).ADSCrossRefGoogle Scholar
  46. 46.
    G. Aarts, J.M.M. Resco, JHEP 02, 061 (2004).ADSCrossRefGoogle Scholar
  47. 47.
    D. Toublan, Phys. Rev. D 56, 5629 (1997).ADSCrossRefGoogle Scholar
  48. 48.
    N. Kaiser, Phys. Rev. C 59, 2945 (1999).ADSCrossRefGoogle Scholar
  49. 49.
    J.I. Kapusta, Ch. Gale, Finite-Temperature Field Theory (Cambridge, 2006).Google Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Physik DepartmentTechnische Universität MünchenGarchingGermany

Personalised recommendations