Advertisement

Recoil-ion trapping for precision mass measurements

  • A. Herlert
  • S. Van Gorp
  • D. Beck
  • K. Blaum
  • M. Breitenfeldt
  • R. B. Cakirli
  • S. George
  • U. Hager
  • F. Herfurth
  • A. Kellerbauer
  • D. Lunney
  • R. Savreux
  • L. Schweikhard
  • C. Yazidjian
Regular Article - Experimental Physics

Abstract

For the first time masses of recoiling daughter ions have been measured that were held after beta-decay in a buffer-gas-filled Penning trap. From the masses of the trapped beta-decaying manganese ions 61-63Mn+ and the daughter recoil-ions 61-63Fe+ the Q values of 61-63Mn have been deduced with absolute uncertainties of about 5keV. The observed yields of iron ions are compared to the results from simulations, which confirm a recoil-ion trapping efficiency of about 50%.

Keywords

Isomeric State Recoil Energy Iron Isotope Daughter Nuclide Precision Trap 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    N. Aoi et al., Phys. Rev. Lett. 102, 012502 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    A. Gade et al., Phys. Rev. C 81, 051304 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    O. Sorlin et al., Eur. Phys. J. A 16, 55 (2003)ADSCrossRefGoogle Scholar
  4. 4.
    P. Adrich et al., Phys. Rev. C 77, 054306 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    D. Pauwels et al., Phys. Rev. C 79, 044309 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    W. Rother et al., Phys. Rev. Lett. 106, 022502 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    M. Hannawald et al., Phys. Rev. Lett. 82, 1391 (1999)ADSCrossRefGoogle Scholar
  8. 8.
    J. Ljungvall et al., Phys. Rev. C 81, 061301 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    K. Wimmer et al., Phys. Rev. Lett. 105, 252501 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    C. Guénaut et al., Phys. Rev. C 75, 044303 (2007)ADSCrossRefGoogle Scholar
  11. 11.
    K. Blaum, Phys. Rep. 425, 1 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    L. Schweikhard, G. Bollen (Editors), Ultra-accurate mass spectometry and related topics, in Int. J. Mass Spectrom., Vol. 251, issues 2-3 (2006)Google Scholar
  13. 13.
    G. Savard et al., Hyperfine Interact. 132, 223 (2001)ADSCrossRefGoogle Scholar
  14. 14.
    J. Dilling et al., Int. J. Mass Spectrom. 251, 198 (2006)ADSCrossRefGoogle Scholar
  15. 15.
    M. Block et al., Eur. Phys. J. D 45, 39 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    J. Ketelaer et al., Nucl. Instrum. Methods A 594, 162 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    V.S. Kolhinen et al., Nucl. Instrum. Methods A 600, 391 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    R. Ringle et al., Nucl. Instrum. Methods A 604, 536 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    T. Eronen et al., Eur. Phys. J. A 48, 46 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    E. Kugler, Hyperfine Interact. 129, 23 (2000)ADSCrossRefGoogle Scholar
  21. 21.
    M. Mukherjee et al., Eur. Phys. J. A 35, 1 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    A. Herlert et al., New J. Phys. 7, 44 (2005)ADSCrossRefGoogle Scholar
  23. 23.
    V.I. Mishin et al., Nucl. Instrum. Methods B 73, 550 (1993)ADSCrossRefGoogle Scholar
  24. 24.
    F. Herfurth et al., Nucl. Instrum. Methods A 469, 254 (2001)ADSCrossRefGoogle Scholar
  25. 25.
    H. Raimbault-Hartmann et al., Nucl. Instrum. Methods B 126, 378 (1997)CrossRefADSGoogle Scholar
  26. 26.
    G. Savard et al., Phys. Lett. A 158, 247 (1991)ADSCrossRefGoogle Scholar
  27. 27.
    ENSDF database (Evaluated Nuclear Structure Data File), http://www.nndc.bnl.gov/ensdf/
  28. 28.
    G. Audi, O. Bersillon, J. Blachot, A.H. Wapstra, Nucl. Phys. A 729, 3 (2003)ADSCrossRefGoogle Scholar
  29. 29.
    A. Herlert et al., Int. J. Mass Spectrom. 251, 131 (2006)ADSCrossRefGoogle Scholar
  30. 30.
    M. König et al., Int. J. Mass Spectrom. Ion Processes 142, 95 (1995)ADSCrossRefGoogle Scholar
  31. 31.
    A.H. Wapstra, G. Audi, C. Thibault, Nucl. Phys. A 729, 129 (2003)ADSCrossRefGoogle Scholar
  32. 32.
    G. Audi, A.H. Wapstra, C. Thibault, Nucl. Phys. A 729, 337 (2003)ADSCrossRefGoogle Scholar
  33. 33.
    A. Kellerbauer et al., Eur. Phys. J. D 22, 53 (2003)ADSCrossRefGoogle Scholar
  34. 34.
    I.F. Croall, H.H. Willis, J. Inorg. Nucl. Chem. 24, 221 (1962)Google Scholar
  35. 35.
    U. Köster et al., Nucl. Instrum. Methods B 204, 347 (2003)ADSCrossRefGoogle Scholar
  36. 36.
    U. Köster, CERN-THESIS-2001-002, PhD thesis, TU München, Germany (1999)Google Scholar
  37. 37.
    S. Naimi et al., Phys. Rev. C 86, 014325 (2012) DOI:10.1103/PhysRevC.86.014325 ADSCrossRefGoogle Scholar
  38. 38.
    C. Guénaut, private communicationGoogle Scholar
  39. 39.
    C. Guénaut, Eur. Phys. J. A 25, s01, 35 (2005) DOI:101140/epjad/i2005-06-030-4
  40. 40.
    S.N. Liddick et al., Phys. Rev. C 73, 044322 (2006)ADSCrossRefGoogle Scholar
  41. 41.
    L. Gaudefroy et al., Eur. Phys. J. A 23, 41 (2005)ADSCrossRefGoogle Scholar
  42. 42.
    M. Oinonen et al., Hyperfine Interact. 127, 431 (2000)ADSCrossRefGoogle Scholar
  43. 43.
    M. Block et al., Phys. Rev. Lett. 100, 132501 (2008)ADSCrossRefGoogle Scholar
  44. 44.
    T. Eronen et al., Phys. Rev. Lett. 103, 252501 (2009)ADSCrossRefGoogle Scholar
  45. 45.
    S. Eliseev et al., Phys. Rev. Lett. 106, 052504 (2011)ADSCrossRefGoogle Scholar
  46. 46.
    D. Fink et al., Phys. Rev. Lett. 108, 062502 (2012)ADSCrossRefGoogle Scholar
  47. 47.
    S. Van Gorp et al., Nucl. Instrum. Methods A 638, 192 (2011)ADSCrossRefGoogle Scholar
  48. 48.
    N. Severijns, M. Beck, O. Naviliat-Cuncic, Rev. Mod. Phys. 78, 991 (2006)ADSCrossRefGoogle Scholar
  49. 49.
    O. Kofoed-Hansen, Dan. Mat. Fys. Medd. 28, 1 (1954)Google Scholar
  50. 50.
    A. Herlert, L. Schweikhard, Int. J. Mass Spectrom. 234, 161 (2004)ADSCrossRefGoogle Scholar
  51. 51.
    E. Runte et al., Nucl. Phys. A 441, 237 (1985)ADSCrossRefGoogle Scholar
  52. 52.
    N. Hoteling et al., Phys. Rev. C 82, 044305 (2010)ADSCrossRefGoogle Scholar
  53. 53.
    H. Mach et al., Acta. Phys. Pol. 40, 477 (2009)ADSGoogle Scholar
  54. 54.
    L.M. Faile, private communicationGoogle Scholar
  55. 55.
    A.T. Gallant et al., Phys. Rev. C 85, 044311 (2012)ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • A. Herlert
    • 1
  • S. Van Gorp
    • 2
  • D. Beck
    • 3
  • K. Blaum
    • 4
  • M. Breitenfeldt
    • 5
  • R. B. Cakirli
    • 6
  • S. George
    • 4
  • U. Hager
    • 7
  • F. Herfurth
    • 3
  • A. Kellerbauer
    • 4
  • D. Lunney
    • 8
  • R. Savreux
    • 3
  • L. Schweikhard
    • 5
  • C. Yazidjian
    • 3
  1. 1.CERNPhysics DepartmentGenevaSwitzerland
  2. 2.K.U. LeuvenInstituut voor Kern- en StralingsfysicaLeuvenBelgium
  3. 3.GSI Helmholtzzentrum für Schwerionenforschung GmbHDarmstadtGermany
  4. 4.Max-Planck-Institut für KernphysikHeidelbergGermany
  5. 5.Ernst-Moritz-Arndt-UniversitätInstitut für PhysikGreifswaldGermany
  6. 6.Istanbul UniversityDepartment of PhysicsIstanbulTurkey
  7. 7.University of JyväskyläDepartment of PhysicsJyväskyläFinland
  8. 8.CSNSM-IN2P3-CNRSUniversité de Paris SudOrsayFrance

Personalised recommendations