238Pu cluster decay in the macroscopic-microscopic approach

Regular Article - Theoretical Physics

Abstract

The experimental half-life of 32Si cluster decay from 238Pu was reproduced by using the microscopic-macroscopic approach. Several microscopic models for the inertia were tested. The best results were obtained with an effective mass given by the Gaussian overlap approximation formalism. The most probable cluster decay modes of the same parent were also predicted. A superasymmetric fission trajectory for the magic radioactivity was found by using the minimal action principle. A magic valley in the deformation energy was confirmed and its origin explained. It is due to strong shell effects of the daughter 206Hg . The nuclear shape parametrization takes into account five degrees of freedom associated to the elongation, necking, mass asymmetry and deformations of nascent fragments. The single particle energies and the nucleon wave functions are obtained within the superasymmetric Woods-Saxon two-center shell model.

References

  1. 1.
    H.J. Rose, G.A. Jones, Nature 307, 245 (1984).ADSCrossRefGoogle Scholar
  2. 2.
    A. Sandulescu, Yu.S. Zamyatnin, J.A. Lebedev, B.F. Myasoedov, S.P. Tretyakova, D. Hasegan, JINR Rapid Commun. 5, 5 (1984).Google Scholar
  3. 3.
    S. Gales, E. Hourani, M. Hussonois, H.P. Shapira, M. Vergnes, Phys. Rev. Lett. 53, 759 (1984).ADSCrossRefGoogle Scholar
  4. 4.
    S.W. Barwick, P.B. Price, J.D. Stevenson, Phys. Rev. C 31, 1984 (1984).ADSCrossRefGoogle Scholar
  5. 5.
    A. Sandulescu, W. Greiner, J. Phys. G 3, L189 (1977).ADSCrossRefGoogle Scholar
  6. 6.
    A. Sandulescu, H.J. Lustig, J. Hahn, W. Greiner, J. Phys. G 4, L279 (1978).ADSCrossRefGoogle Scholar
  7. 7.
    A. Sandulescu, D.N. Poenaru, W. Greiner, Sov. J. Part. Nucl. 11, 528 (1980).Google Scholar
  8. 8.
    A. Sandulescu, J. Phys. G 15, 529 (1989).ADSCrossRefGoogle Scholar
  9. 9.
    A. Sandulescu, W. Greiner, Rep. Prog. Phys. 55, 1423 (1992).ADSCrossRefGoogle Scholar
  10. 10.
    A. Sandulescu, D.N. Poenaru, W. Greiner, J.H. Hamilton, Phys. Rev. Lett. 54, 490 (1985).ADSCrossRefGoogle Scholar
  11. 11.
    D.S. Delion, Theory of particle and cluster emission (Springer-Verlag, Berlin, 2010).Google Scholar
  12. 12.
    D.N. Poenaru, W. Greiner, K. Depta, M. Ivascu, A. Sandulescu, At. Data Nucl. Data Tables 34, 423 (1986).ADSCrossRefGoogle Scholar
  13. 13.
    M. Mirea, A. Sandulescu, D.S. Delion, Nucl. Phys. A 870-871, 23 (2011).ADSCrossRefGoogle Scholar
  14. 14.
    M. Mirea, A. Sandulescu, D.S. Delion, Proc. Rom. Acad. Ser. A 12, 203 (2011).Google Scholar
  15. 15.
    M. Mirea, Rom. J. Phys. 57, 372 (2012).Google Scholar
  16. 16.
    M. Warda, L.M. Robledo, Phys. Rev. C 84, 044608 (2011).ADSCrossRefGoogle Scholar
  17. 17.
    M. Warda, Acta Phys. Pol. B 42, 477 (2011).CrossRefGoogle Scholar
  18. 18.
    T. Ichikawa, A. Iwamoto, P. Moller, A.J. Sierk, Phys. Rev. C. 71, 044608 (2005).ADSCrossRefGoogle Scholar
  19. 19.
    L. Bing-Nan, Z. En-Guang, Z. Shan-Gui, Phys. Rev. C 85, 011301 (2012).ADSCrossRefGoogle Scholar
  20. 20.
    M. Mirea, Phys. Rev. C 78, 044618 (2008).ADSCrossRefGoogle Scholar
  21. 21.
    M. Mirea, D.S. Delion, A. Sandulescu, Phys. Rev. C 81, 044317 (2010).ADSCrossRefGoogle Scholar
  22. 22.
    M. Mirea, L. Tassan-Got, Cent. Eur. J. Phys. 9, 116 (2011).CrossRefGoogle Scholar
  23. 23.
    M. Brack, J. Damgaard, A. Jensen, H. Pauli, V. Strutinsky, W. Wong, Rev. Mod. Phys. 44, 320 (1972).ADSCrossRefGoogle Scholar
  24. 24.
    M. Mirea, O. Bajeat, F. Clapier, F. Ibrahim, A.C. Mueller, N. Pauwels, J. Proust, Eur. Phys. J. A 11, 59 (2001).ADSCrossRefGoogle Scholar
  25. 25.
    P. Moller, J.R. Nix, W.D. Myers, W.J. Swiatecki, At. Data Nucl. Data Tables 59, 185 (1995).ADSCrossRefGoogle Scholar
  26. 26.
    Y.S. Perkasa, A. Waris, R. Kurniadi, Z. Suud, Appl. Mech. Mat. 110-116, 2475 (2012).CrossRefGoogle Scholar
  27. 27.
    M. Mirea, D.S. Delion, A. Sandulescu, EPL 85, 12001 (2009).ADSCrossRefGoogle Scholar
  28. 28.
    M. Mirea, R.C. Bobulescu, J. Phys. G 37, 055106 (2010).ADSCrossRefGoogle Scholar
  29. 29.
    A. Gozdz, K. Pomorski, M. Brack, E. Werner, Nucl. Phys. A 442, 26 (1985).ADSCrossRefGoogle Scholar
  30. 30.
    A. Gozdz, K. Pomorski, M. Brack, E. Werner, Nucl. Phys. A 442, 50 (1985).ADSCrossRefGoogle Scholar
  31. 31.
    M. Mirea, Rom. Rep. Phys. 63, 676 (2011).Google Scholar
  32. 32.
    D.N. Poenaru, M. Mirea, W. Greiner, I. Cata, D. Mazilu, Mod. Phys. Lett. A 5, 2101 (1990).ADSCrossRefGoogle Scholar
  33. 33.
    M. Mirea, Phys. Lett. B 680, 316 (2009).ADSCrossRefGoogle Scholar
  34. 34.
    P. Moller, A.J. Sierk, T. Ichikawa, A. Iwamoto, R. Bengtsson, H. Uhrenholt, S. Aberg, Phys. Rev. C 79, 064304 (2009).ADSCrossRefGoogle Scholar
  35. 35.
    G. Royer, R.K. Gupta, V.Yu. Denisov, Nucl. Phys. A 632, 275 (1998).ADSCrossRefGoogle Scholar
  36. 36.
    M. Mirea, Phys. Rev. C 83, 054608 (2011).ADSCrossRefGoogle Scholar
  37. 37.
    P.B. Price, Nucl. Phys. A 502, 41c (1989).ADSCrossRefGoogle Scholar
  38. 38.
    G. Royer, R. Moustabchir, Nucl. Phys. A 683, 182 (2001).ADSCrossRefGoogle Scholar
  39. 39.
    A. Staszczak, S. Pilat, K. Pomorski, Nucl. Phys. A 504, 589 (1989).ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Horia Hulubei National Institute for Physics and Nuclear EngineeringBucharestRomania
  2. 2.Bioterra UniversityBucharestRomania
  3. 3.Institute for Advanced Studies in PhysicsRomanian AcademyBucharestRomania
  4. 4.Academy of Romanian ScientistsBucharestRomania

Personalised recommendations