Measurement of the 85Rb(γ, n)84mRb cross-section in the energy range 10-19 MeV with bremsstrahlung photons

  • C. Plaisir
  • F. Hannachi
  • F. Gobet
  • M. Tarisien
  • M. M. Aléonard
  • V. Méot
  • G. Gosselin
  • P. Morel
  • B. Morillon
Regular Article - Experimental Physics

Abstract

The 85Rb (\( \gamma\) ,n) 84mRb cross-section has been measured with bremsstrahlung photons at the CEA/DAM ELSA electron accelerator. Electrons with energies ranging from 10 to 19 MeV have been used. Natural rubidium chloride, gold and copper samples have been irradiated at the same time. The well-known activation standards 197Au (\( \gamma\) ,n) and 63Cu (\( \gamma\) ,n) reaction cross-sections have been used to validate the experimental method and the data analysis based on the GEANT4 simulation code. Our results are compared to available experimental data.

References

  1. 1.
    F. Attallah et al., Phys. Rev. Lett. 75, 1715 (1995)ADSCrossRefGoogle Scholar
  2. 2.
    N. Klay et al., Phys. Rev. C 44, 2839 (1991)ADSCrossRefGoogle Scholar
  3. 3.
    G. Gosselin et al., Phys. Rev. C 81, 055808 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    F. Hannachi et al., Plasma Phys. Control. Fusion 49, B79 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    F. Gobet et al., Nucl. Instrum. Methods A 653, 80 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    R.B. Firestone, Table of Isotopes, 8th edition (John Wiley and Sons, Inc., New York, 1999)Google Scholar
  7. 7.
    M.G. Davydov, F.SH. Khamraev, M. Shomurodov, At. Energy 62, 193 (1987)Google Scholar
  8. 8.
    V.A. Zheltonozhsky, V.M. Mazur, Z.M. Bigan, D.M. Symochko, Yad. Fiz. Energ. 2, 13 (2008)Google Scholar
  9. 9.
    V.A. Zheltonozhsky, V.M. Mazur, Z.M. Bigan, D.M. Symochko, J. Phys G: Nucl. Part. Phys. 37, 035101 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    A. Lepretre et al., Nucl. Phys. A 159, 561 (1970)ADSCrossRefGoogle Scholar
  11. 11.
    P. Guimbal, EPAC’02 proceedings (Paris, 2002) p. 1768Google Scholar
  12. 12.
  13. 13.
    M. Tarisien et al., Rev. Sci. Instrum. 82, 023302 (2011)ADSCrossRefGoogle Scholar
  14. 14.
    S. Agostinelli et al., Nucl. Instrum. Methods A 506, 250 (2003)ADSCrossRefGoogle Scholar
  15. 15.
    R.E. Sund et al., Phys. Rev. 176, 1366 (1968)ADSCrossRefGoogle Scholar
  16. 16.
    C. Plaisir, Ph. D thesis (University Bordeaux 1, 2010)Google Scholar
  17. 17.
    S.M. Seltzer, M.J. Berger, Nucl. Instrum. Methods B 12, 95 (1985)ADSCrossRefGoogle Scholar
  18. 18.
    A. Veyssière, H. Beil, R. Bergère, P. Carlos, A. Lepretre, Nucl. Phys. A 159, 561 (1970)ADSCrossRefGoogle Scholar
  19. 19.
    C. Nair et al., Phys. Rev. C 78, 055802 (2008)ADSCrossRefGoogle Scholar
  20. 20.
  21. 21.
    B.L. Berman, R.E. Pywell, S.S. Dietrich, M.N. Thompson, K.G. Ncneil, J.W. Jury, Phys. Rev. C 36, 1286 (1987)ADSCrossRefGoogle Scholar
  22. 22.
    V.V. Varlamov et al., Vop. At. Nauki. Tekh. 1-2, 48 (2003)Google Scholar
  23. 23.
    M. Gerbaux et al., Rev. Sci. Instrum. 79, 023504 (2008)ADSCrossRefGoogle Scholar
  24. 24.

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • C. Plaisir
    • 1
  • F. Hannachi
    • 1
  • F. Gobet
    • 1
  • M. Tarisien
    • 1
  • M. M. Aléonard
    • 1
  • V. Méot
    • 2
  • G. Gosselin
    • 2
  • P. Morel
    • 2
  • B. Morillon
    • 2
  1. 1.Université de Bordeaux, CNRS/IN2P3Centre d’Etudes Nucléaires de Bordeaux-GradignanGradignanFrance
  2. 2.CEA, DAM, DIFArpajon CedexFrance

Personalised recommendations