Three particles in a finite volume

Regular Article - Theoretical Physics

Abstract

Within the non-relativistic potential scattering theory, we derive a generalized version of the Lüscher formula, which includes three-particle inelastic channels. Faddeev equations in a finite volume are discussed in detail. It is proved that, even in the presence of the three-particle intermediate states, the discrete spectrum in a finite box is determined by the infinite-volume elements of the scattering S -matrix up to corrections, exponentially suppressed at large volumes.

References

  1. 1.
    N. Isgur, G. Karl, Phys. Lett. B 72, 109 (1977).ADSCrossRefGoogle Scholar
  2. 2.
    N. Isgur, G. Karl, Phys. Rev. D 19, 2653 (1979) 23.ADSCrossRefGoogle Scholar
  3. 3.
    Z.P. Li, V. Burkert, Z.J. Li, Phys. Rev. D 46, 70 (1992).ADSCrossRefGoogle Scholar
  4. 4.
    C.E. Carlson, N.C. Mukhopadhyay, Phys. Rev. Lett. 67, 3745 (1991).ADSCrossRefGoogle Scholar
  5. 5.
    P.A.M. Guichon, Phys. Lett. B 164, 361 (1985).ADSCrossRefGoogle Scholar
  6. 6.
    O. Krehl, C. Hanhart, S. Krewald, J. Speth, Phys. Rev. C 62, 025207 (2000) arXiv:nucl-th/9911080.ADSCrossRefGoogle Scholar
  7. 7.
    I. Zahed, U.-G. Meißner, U.B. Kaulfuss, Nucl. Phys. A 426, 525 (1984).ADSCrossRefGoogle Scholar
  8. 8.
    U.-G. Meißner, J.W. Durso, Nucl. Phys. A 430, 670 (1984).ADSCrossRefGoogle Scholar
  9. 9.
    QCDSF Collaboration and UKQCD Collaboration and LHPC Collaboration (M. Gockeler, R. Horsley, D. Pleiter, P.E.L. Rakow, G. Schierholz, C.M. Maynard, D.G. Richards), Phys. Lett. B 532, 63 (2002) arXiv:hep-lat/0106022.ADSCrossRefGoogle Scholar
  10. 10.
    W. Melnitchouk et al., Phys. Rev. D 67, 114506 (2003) arXiv:hep-lat/0202022.ADSCrossRefGoogle Scholar
  11. 11.
    F.X. Lee, D.B. Leinweber, Nucl. Phys. Proc. Suppl. 73, 258 (1999) arXiv:hep-lat/9809095.ADSCrossRefGoogle Scholar
  12. 12.
    F.X. Lee, S.J. Dong, T. Draper, I. Horvath, K.F. Liu, N. Mathur, J.B. Zhang, Nucl. Phys. Proc. Suppl. 119, 296 (2003) arXiv:hep-lat/0208070.ADSCrossRefGoogle Scholar
  13. 13.
    LHP Collaboration (R.G. Edwards, U.M. Heller, D.G. Richards), Nucl. Phys. Proc. Suppl. 119, 305 (2003) arXiv:hep-lat/0303004.ADSMATHCrossRefGoogle Scholar
  14. 14.
    N. Mathur et al., Phys. Lett. B 605, 137 (2005) arXiv:hep-ph/0306199.ADSCrossRefGoogle Scholar
  15. 15.
    S. Sasaki, T. Blum, S. Ohta, Phys. Rev. D 65, 074503 (2002) hep-lat/0102010.ADSCrossRefGoogle Scholar
  16. 16.
    S. Sasaki, Prog. Theor. Phys. Suppl. 151, 143 (2003) arXiv:nucl-th/0305014.ADSCrossRefGoogle Scholar
  17. 17.
    K. Sasaki, S. Sasaki, T. Hatsuda, Phys. Lett. B 623, 208 (2005) hep-lat/0504020.ADSCrossRefGoogle Scholar
  18. 18.
    S. Basak et al., Phys. Rev. D 76, 074504 (2007) arXiv:0709.0008 [hep-lat].ADSCrossRefGoogle Scholar
  19. 19.
    S. Cohen et al., PoS LAT2009, 112 (2009) arXiv:0911.3373 [hep-lat].Google Scholar
  20. 20.
    J. Bulava et al., Phys. Rev. D 79, 034505 (2009) arXiv:0901.0027 [hep-lat].ADSCrossRefGoogle Scholar
  21. 21.
    J. Bulava et al., Phys. Rev. D 82, 014507 (2010) arXiv:1004.5072 [hep-lat].ADSCrossRefGoogle Scholar
  22. 22.
    BGR (Bern-Graz-Regensburg) Collaboration (G.P. Engel, C.B. Lang, M. Limmer, D. Möhler, A. Schäfer), Phys. Rev. D 82, 034505 (2010) arXiv:1005.1748 [hep-lat].ADSCrossRefGoogle Scholar
  23. 23.
    CSSM Lattice Collaboration (M.S. Mahbub et al.), Phys. Lett. B 707, 389 (2012) arXiv:1011.5724 [hep-lat].ADSCrossRefGoogle Scholar
  24. 24.
    H.W. Lin, S.D. Cohen, arXiv:1108.2528 [hep-lat].
  25. 25.
    H.W. Lin, Chin. J. Phys. 49, 827 (2011) arXiv:1106.1608 [hep-lat].Google Scholar
  26. 26.
    B. Borasoy, P.C. Bruns, U.-G. Meißner, R. Lewis, Phys. Lett. B 641, 294 (2006) arXiv:hep-lat/0608001.ADSCrossRefGoogle Scholar
  27. 27.
    M. Lüscher, Nucl. Phys. B 354, 531 (1991).ADSCrossRefGoogle Scholar
  28. 28.
    QCDSF Collaboration (M. Gockeler, R. Horsley, Y. Nakamura, D. Pleiter, P.E.L. Rakow, G. Schierholz, J. Zanotti), PoS LATTICE2008, 136 (2008) arXiv:0810.5337 [hep-lat].Google Scholar
  29. 29.
    CS Collaboration (S. Aoki et al.), Phys. Rev. D 84, 094505 (2011) arXiv:1106.5365 [hep-lat].ADSCrossRefGoogle Scholar
  30. 30.
    M. Lage, U.-G. Meißner, A. Rusetsky, Phys. Lett. B 681, 439 (2009) arXiv:0905.0069 [hep-lat].ADSCrossRefGoogle Scholar
  31. 31.
    C. Liu, X. Feng, S. He, Int. J. Mod. Phys. A 21, 847 (2006) arXiv:hep-lat/0508022.ADSMATHCrossRefGoogle Scholar
  32. 32.
    V. Bernard, M. Lage, U.-G. Meißner, A. Rusetsky, JHEP 01, 019 (2011) arXiv:1010.6018 [hep-lat].ADSCrossRefGoogle Scholar
  33. 33.
    M. Döring, U.-G. Meißner, E. Oset, A. Rusetsky, Eur. Phys. J. A 47, 139 (2011) arXiv:1107.3988 [hep-lat].ADSCrossRefGoogle Scholar
  34. 34.
    A.M. Torres, L.R. Dai, C. Koren, D. Jido, E. Oset, arXiv:1109.0396 [hep-lat].
  35. 35.
    M. Döring, U.-G. Meißner, arXiv:1111.0616 [hep-lat].
  36. 36.
    V.B. Belyaev, Lectures On The Theory Of Few Body Systems, in Springer Series in Nuclear and Particle Physics (Springer, 1990) pp. 134.Google Scholar
  37. 37.
    T. Luu, M.J. Savage, Phys. Rev. D 83, 114508 (2011) arXiv:1101.3347 [hep-lat].ADSCrossRefGoogle Scholar
  38. 38.
    V. Bernard, M. Lage, U.-G. Meißner, A. Rusetsky, JHEP 08, 024 (2008) arXiv:0806.4495 [hep-lat].ADSCrossRefGoogle Scholar
  39. 39.
    M. Döring, J. Haidenbauer, U.-G. Meißner, A. Rusetsky, Eur. Phys. J. A 47, 163 (2011) arXiv:1108.0676 [hep-lat].ADSCrossRefGoogle Scholar
  40. 40.
    M. Lüscher, Commun. Math. Phys. 105, 153 (1986).ADSCrossRefGoogle Scholar
  41. 41.
    K.L. Kowalski, Phys. Rev. D 7, 1806 (1973).ADSCrossRefGoogle Scholar
  42. 42.
    K.L. Kowalski, Nucl. Phys. A 264, 173 (1976).ADSCrossRefGoogle Scholar
  43. 43.
    I. Manning, Phys. Rev. D 5, 1472 (1972).ADSCrossRefGoogle Scholar
  44. 44.
    K.L. Kowalski, Phys. Rev. D 5, 395 (1972).ADSCrossRefGoogle Scholar
  45. 45.
    M. Döring, C. Hanhart, F. Huang, S. Krewald, U.-G. Meißner, Nucl. Phys. A 829, 170 (2009) arXiv:0903.4337 [nucl-th].ADSCrossRefGoogle Scholar
  46. 46.
    M. Döring, C. Hanhart, F. Huang, S. Krewald, U.-G. Meißner, Phys. Lett. B 681, 26 (2009) arXiv:0903.1781 [nucl-th].ADSCrossRefGoogle Scholar
  47. 47.
    S. Kreuzer, H.W. Hammer, Phys. Lett. B 673, 260 (2009) arXiv:0811.0159 [nucl-th].ADSCrossRefGoogle Scholar
  48. 48.
    S. Kreuzer, H.W. Hammer, Eur. Phys. J. A 43, 229 (2010) arXiv:0910.2191 [nucl-th].ADSCrossRefGoogle Scholar
  49. 49.
    S. Kreuzer, H.W. Hammer, Phys. Lett. B 694, 424 (2011) arXiv:1008.4499 [hep-lat].ADSCrossRefGoogle Scholar
  50. 50.
    S. Bour, S. König, D. Lee, H.W. Hammer, U.-G. Meißner, Phys. Rev. D 84, 091503 (2011) arXiv:1107.1272 [nucl-th].ADSCrossRefGoogle Scholar
  51. 51.
    I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series and Products (Academic Press, 2007).Google Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Helmholtz-Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical PhysicsUniversität BonnBonnGermany

Personalised recommendations