Advertisement

Three particles in a finite volume

  • K. PolejaevaEmail author
  • A. Rusetsky
Regular Article - Theoretical Physics

Abstract

Within the non-relativistic potential scattering theory, we derive a generalized version of the Lüscher formula, which includes three-particle inelastic channels. Faddeev equations in a finite volume are discussed in detail. It is proved that, even in the presence of the three-particle intermediate states, the discrete spectrum in a finite box is determined by the infinite-volume elements of the scattering S -matrix up to corrections, exponentially suppressed at large volumes.

Keywords

Regular Function Faddeev Equation Roper Resonance QCDSF Collaboration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    N. Isgur, G. Karl, Phys. Lett. B 72, 109 (1977).ADSCrossRefGoogle Scholar
  2. 2.
    N. Isgur, G. Karl, Phys. Rev. D 19, 2653 (1979) 23.ADSCrossRefGoogle Scholar
  3. 3.
    Z.P. Li, V. Burkert, Z.J. Li, Phys. Rev. D 46, 70 (1992).ADSCrossRefGoogle Scholar
  4. 4.
    C.E. Carlson, N.C. Mukhopadhyay, Phys. Rev. Lett. 67, 3745 (1991).ADSCrossRefGoogle Scholar
  5. 5.
    P.A.M. Guichon, Phys. Lett. B 164, 361 (1985).ADSCrossRefGoogle Scholar
  6. 6.
    O. Krehl, C. Hanhart, S. Krewald, J. Speth, Phys. Rev. C 62, 025207 (2000) arXiv:nucl-th/9911080.ADSCrossRefGoogle Scholar
  7. 7.
    I. Zahed, U.-G. Meißner, U.B. Kaulfuss, Nucl. Phys. A 426, 525 (1984).ADSCrossRefGoogle Scholar
  8. 8.
    U.-G. Meißner, J.W. Durso, Nucl. Phys. A 430, 670 (1984).ADSCrossRefGoogle Scholar
  9. 9.
    QCDSF Collaboration and UKQCD Collaboration and LHPC Collaboration (M. Gockeler, R. Horsley, D. Pleiter, P.E.L. Rakow, G. Schierholz, C.M. Maynard, D.G. Richards), Phys. Lett. B 532, 63 (2002) arXiv:hep-lat/0106022.ADSCrossRefGoogle Scholar
  10. 10.
    W. Melnitchouk et al., Phys. Rev. D 67, 114506 (2003) arXiv:hep-lat/0202022.ADSCrossRefGoogle Scholar
  11. 11.
    F.X. Lee, D.B. Leinweber, Nucl. Phys. Proc. Suppl. 73, 258 (1999) arXiv:hep-lat/9809095.ADSCrossRefGoogle Scholar
  12. 12.
    F.X. Lee, S.J. Dong, T. Draper, I. Horvath, K.F. Liu, N. Mathur, J.B. Zhang, Nucl. Phys. Proc. Suppl. 119, 296 (2003) arXiv:hep-lat/0208070.ADSCrossRefGoogle Scholar
  13. 13.
    LHP Collaboration (R.G. Edwards, U.M. Heller, D.G. Richards), Nucl. Phys. Proc. Suppl. 119, 305 (2003) arXiv:hep-lat/0303004.ADSzbMATHCrossRefGoogle Scholar
  14. 14.
    N. Mathur et al., Phys. Lett. B 605, 137 (2005) arXiv:hep-ph/0306199.ADSCrossRefGoogle Scholar
  15. 15.
    S. Sasaki, T. Blum, S. Ohta, Phys. Rev. D 65, 074503 (2002) hep-lat/0102010.ADSCrossRefGoogle Scholar
  16. 16.
    S. Sasaki, Prog. Theor. Phys. Suppl. 151, 143 (2003) arXiv:nucl-th/0305014.ADSCrossRefGoogle Scholar
  17. 17.
    K. Sasaki, S. Sasaki, T. Hatsuda, Phys. Lett. B 623, 208 (2005) hep-lat/0504020.ADSCrossRefGoogle Scholar
  18. 18.
    S. Basak et al., Phys. Rev. D 76, 074504 (2007) arXiv:0709.0008 [hep-lat].ADSCrossRefGoogle Scholar
  19. 19.
    S. Cohen et al., PoS LAT2009, 112 (2009) arXiv:0911.3373 [hep-lat].Google Scholar
  20. 20.
    J. Bulava et al., Phys. Rev. D 79, 034505 (2009) arXiv:0901.0027 [hep-lat].ADSCrossRefGoogle Scholar
  21. 21.
    J. Bulava et al., Phys. Rev. D 82, 014507 (2010) arXiv:1004.5072 [hep-lat].ADSCrossRefGoogle Scholar
  22. 22.
    BGR (Bern-Graz-Regensburg) Collaboration (G.P. Engel, C.B. Lang, M. Limmer, D. Möhler, A. Schäfer), Phys. Rev. D 82, 034505 (2010) arXiv:1005.1748 [hep-lat].ADSCrossRefGoogle Scholar
  23. 23.
    CSSM Lattice Collaboration (M.S. Mahbub et al.), Phys. Lett. B 707, 389 (2012) arXiv:1011.5724 [hep-lat].ADSCrossRefGoogle Scholar
  24. 24.
    H.W. Lin, S.D. Cohen, arXiv:1108.2528 [hep-lat].
  25. 25.
    H.W. Lin, Chin. J. Phys. 49, 827 (2011) arXiv:1106.1608 [hep-lat].Google Scholar
  26. 26.
    B. Borasoy, P.C. Bruns, U.-G. Meißner, R. Lewis, Phys. Lett. B 641, 294 (2006) arXiv:hep-lat/0608001.ADSCrossRefGoogle Scholar
  27. 27.
    M. Lüscher, Nucl. Phys. B 354, 531 (1991).ADSCrossRefGoogle Scholar
  28. 28.
    QCDSF Collaboration (M. Gockeler, R. Horsley, Y. Nakamura, D. Pleiter, P.E.L. Rakow, G. Schierholz, J. Zanotti), PoS LATTICE2008, 136 (2008) arXiv:0810.5337 [hep-lat].Google Scholar
  29. 29.
    CS Collaboration (S. Aoki et al.), Phys. Rev. D 84, 094505 (2011) arXiv:1106.5365 [hep-lat].ADSCrossRefGoogle Scholar
  30. 30.
    M. Lage, U.-G. Meißner, A. Rusetsky, Phys. Lett. B 681, 439 (2009) arXiv:0905.0069 [hep-lat].ADSCrossRefGoogle Scholar
  31. 31.
    C. Liu, X. Feng, S. He, Int. J. Mod. Phys. A 21, 847 (2006) arXiv:hep-lat/0508022.ADSzbMATHCrossRefGoogle Scholar
  32. 32.
    V. Bernard, M. Lage, U.-G. Meißner, A. Rusetsky, JHEP 01, 019 (2011) arXiv:1010.6018 [hep-lat].ADSCrossRefGoogle Scholar
  33. 33.
    M. Döring, U.-G. Meißner, E. Oset, A. Rusetsky, Eur. Phys. J. A 47, 139 (2011) arXiv:1107.3988 [hep-lat].ADSCrossRefGoogle Scholar
  34. 34.
    A.M. Torres, L.R. Dai, C. Koren, D. Jido, E. Oset, arXiv:1109.0396 [hep-lat].
  35. 35.
    M. Döring, U.-G. Meißner, arXiv:1111.0616 [hep-lat].
  36. 36.
    V.B. Belyaev, Lectures On The Theory Of Few Body Systems, in Springer Series in Nuclear and Particle Physics (Springer, 1990) pp. 134.Google Scholar
  37. 37.
    T. Luu, M.J. Savage, Phys. Rev. D 83, 114508 (2011) arXiv:1101.3347 [hep-lat].ADSCrossRefGoogle Scholar
  38. 38.
    V. Bernard, M. Lage, U.-G. Meißner, A. Rusetsky, JHEP 08, 024 (2008) arXiv:0806.4495 [hep-lat].ADSCrossRefGoogle Scholar
  39. 39.
    M. Döring, J. Haidenbauer, U.-G. Meißner, A. Rusetsky, Eur. Phys. J. A 47, 163 (2011) arXiv:1108.0676 [hep-lat].ADSCrossRefGoogle Scholar
  40. 40.
    M. Lüscher, Commun. Math. Phys. 105, 153 (1986).ADSCrossRefGoogle Scholar
  41. 41.
    K.L. Kowalski, Phys. Rev. D 7, 1806 (1973).ADSCrossRefGoogle Scholar
  42. 42.
    K.L. Kowalski, Nucl. Phys. A 264, 173 (1976).ADSCrossRefGoogle Scholar
  43. 43.
    I. Manning, Phys. Rev. D 5, 1472 (1972).ADSCrossRefGoogle Scholar
  44. 44.
    K.L. Kowalski, Phys. Rev. D 5, 395 (1972).ADSCrossRefGoogle Scholar
  45. 45.
    M. Döring, C. Hanhart, F. Huang, S. Krewald, U.-G. Meißner, Nucl. Phys. A 829, 170 (2009) arXiv:0903.4337 [nucl-th].ADSCrossRefGoogle Scholar
  46. 46.
    M. Döring, C. Hanhart, F. Huang, S. Krewald, U.-G. Meißner, Phys. Lett. B 681, 26 (2009) arXiv:0903.1781 [nucl-th].ADSCrossRefGoogle Scholar
  47. 47.
    S. Kreuzer, H.W. Hammer, Phys. Lett. B 673, 260 (2009) arXiv:0811.0159 [nucl-th].ADSCrossRefGoogle Scholar
  48. 48.
    S. Kreuzer, H.W. Hammer, Eur. Phys. J. A 43, 229 (2010) arXiv:0910.2191 [nucl-th].ADSCrossRefGoogle Scholar
  49. 49.
    S. Kreuzer, H.W. Hammer, Phys. Lett. B 694, 424 (2011) arXiv:1008.4499 [hep-lat].ADSCrossRefGoogle Scholar
  50. 50.
    S. Bour, S. König, D. Lee, H.W. Hammer, U.-G. Meißner, Phys. Rev. D 84, 091503 (2011) arXiv:1107.1272 [nucl-th].ADSCrossRefGoogle Scholar
  51. 51.
    I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series and Products (Academic Press, 2007).Google Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Helmholtz-Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical PhysicsUniversität BonnBonnGermany

Personalised recommendations