Advertisement

The pp → nK+Σ+ reaction at 2.95 GeV/c

  • The COSY-TOF Collaboration
  • M. Abdel-Bary
  • S. Abdel-Samad
  • R. Bilger
  • K-Th. Brinkmann
  • H. Clement
  • E. Doroshkevich
  • S. Dshemuchadse
  • A. Erhardt
  • W. Eyrich
  • D. Filges
  • A. Filippi
  • H. FreieslebenEmail author
  • M. Fritsch
  • J. Georgi
  • A. Gillitzer
  • D. Hesselbarth
  • B. Jakob
  • L. Karsch
  • K. Kilian
  • H. Koch
  • J. Kreß
  • E. Kuhlmann
  • S. Marcello
  • S. Marwinski
  • S. Mauro
  • P. Michel
  • K. Möller
  • H. P. Morsch
  • L. Naumann
  • N. Paul
  • Ch. Plettner
  • M. Richter
  • J. Ritman
  • E. Roderburg
  • A. Schamlott
  • P. Schönmeier
  • W. Schroeder
  • M. Schulte-Wissermann
  • T. Sefzick
  • F. Stinzig
  • M. Steinke
  • G. Y. Sun
  • A. Teufel
  • G. J. Wagner
  • M. Wagner
  • A. Wilms
  • P. Wintz
  • S. Wirth
Regular Article - Experimental Physics

Abstract

The total cross-section of the pp → nK+Σ+ reaction was measured at COSY using a proton beam with a momentum of p beam = 2.95 GeV/c, corresponding to an excess energy of ε = 129 MeV. The neutron detector COSYnus was added to the time-of-flight spectrometer COSY-TOF which tracks charged primary and secondary particles. Thus a complete reconstruction of the exit channel was feasible by exploiting for both neutron and kaon their time and direction of flight as well as the decay of the Σ+-hyperon into a neutral and a charged particle. The cross-section was determined to be between σ = 2.0 and 5.9 μb with 68% confidence. The experimental data published so far by various groups for this reaction are assessed as a whole. We conclude that either the theoretical models lack some important aspect of the reaction mechanism if one takes the experimental data at face value, or the experimental data are inconsistent and therefore theoretical descriptions must fail.

Keywords

Invariant Mass Excess Energy Exit Channel Pion Exchange Nucleon Resonance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    M. Abdel-Bary et al., Eur. Phys. J. A 46, 27 (2010).ADSCrossRefGoogle Scholar
  2. 2.
    M. Abdel-Bary et al., Eur. Phys. J. A 48, 23 (2012).ADSCrossRefGoogle Scholar
  3. 3.
    R.I. Louttit et al., Phys. Rev. 123, 1465 (1961).ADSCrossRefGoogle Scholar
  4. 4.
    W. Chinowsky et al., Phys. Rev. 165, 1466 (1968).ADSCrossRefGoogle Scholar
  5. 5.
    I. Sondhi, Phys. Lett. B 26, 645 (1968).ADSCrossRefGoogle Scholar
  6. 6.
    UCLA 1033 (1968) PhD Thesis.Google Scholar
  7. 7.
    T. Rozek et al., Phys. Lett. B 643, 251 (2006).ADSCrossRefGoogle Scholar
  8. 8.
    Yu. Valdau et al., Phys. Lett. B 652, 245 (2007).ADSCrossRefGoogle Scholar
  9. 9.
    Yu. Valdau et al., Phys. Rev. C 81, 045208 (2010).ADSCrossRefGoogle Scholar
  10. 10.
    A. Budzanowski et al., Phys. Lett. B 692, 10 (2010).ADSCrossRefGoogle Scholar
  11. 11.
    A. Sibirtsev et al., Eur. Phys. J. A 32, 229 (2007).ADSCrossRefGoogle Scholar
  12. 12.
    W.J. Hogan et al., Phys. Rev. 166, 166 (1968).CrossRefGoogle Scholar
  13. 13.
    J.T. Reed et al., Phys. Rev. 168, 1495 (1968).ADSCrossRefGoogle Scholar
  14. 14.
    R. Siebert et al., Nucl. Phys. A 567, 819 (1994).ADSCrossRefGoogle Scholar
  15. 15.
    Yu. Valdau, C. Wilkin, Phys. Lett. B 696, 23 (2011).ADSCrossRefGoogle Scholar
  16. 16.
    R. Bilger et al., Phys. Lett. B 420, 217 (1998).ADSCrossRefGoogle Scholar
  17. 17.
    A. Hassan et al., Nucl. Instrum. Methods Phys. Res. A 425, 403 (1999).ADSCrossRefGoogle Scholar
  18. 18.
    M. Dahmen et al., Nucl. Instrum. Methods Phys. Res. A 348, 97 (1994).ADSCrossRefGoogle Scholar
  19. 19.
    A. Böhm et al., Nucl. Instrum. Methods Phys. Res. A 443, 238 (2000).ADSCrossRefGoogle Scholar
  20. 20.
    L. Karsch et al., Nucl. Instrum. Methods Phys. Res. A 460, 362 (2001).ADSCrossRefGoogle Scholar
  21. 21.
    L. Karsch, PhD Thesis, Technische Universität Dresden (2005).Google Scholar
  22. 22.
    Particle Data Group (K. Nakamura et al.), J. Phys. G 37, 075021 (2010).ADSCrossRefGoogle Scholar
  23. 23.
    A. Baldini, Landoldt-Børnstein: Numerical Data and Functional Relationships in Science and Technology, New Series Vol. I/12b (Springer, New York, Heidelberg, 1988). .Google Scholar
  24. 24.
    S. Brand, PhD Thesis, Ruhr-Universität Bochum (1995).Google Scholar
  25. 25.
    U. Zielinsky, PhD Thesis, Ruhr-Universität Bochum (1999).Google Scholar
  26. 26.
    P. Cloth, Programm INC77, Version 1.0, FZ Jülich, 1992.Google Scholar
  27. 27.
    H.W. Bertini, Phys. Rev. 131, 1821 (1963).ADSCrossRefGoogle Scholar
  28. 28.
    H.W. Bertini, Phys. Rev. 188, 1711 (1969).CrossRefADSGoogle Scholar
  29. 29.
    M. Abdel-Bary et al., Phys. Lett. B 688, 142 (2010).ADSCrossRefGoogle Scholar
  30. 30.
    D. Albers et al., Phys. Rev. Lett. 78, 1652 (1997).ADSCrossRefGoogle Scholar
  31. 31.
    G. Feldman, R.D. Cousins, Phys. Rev. D 57, 3873 (1998).ADSCrossRefGoogle Scholar
  32. 32.
  33. 33.
    G.Q. Li, C.M. Ko, Nucl. Phys. A 594, 439 (1995).ADSCrossRefGoogle Scholar
  34. 34.
    K. Tsushima et al., Phys. Rev. C 59, 369 (2000).ADSCrossRefGoogle Scholar
  35. 35.
    R. Shyam, Phys. Rev. C 73, 035211 (2006).ADSCrossRefGoogle Scholar
  36. 36.
    Ju-Jun Xie, Bing-Song Zou, Phys. Lett. B 649, 405 (2007).CrossRefGoogle Scholar
  37. 37.
    Cao Xu et al., Chin. Phys. Lett. 25, 888 (2008).ADSCrossRefGoogle Scholar
  38. 38.
    A. Sibirtsev et al., Eur. Phys. J. A 27, 296 (2006).Google Scholar
  39. 39.
    G. Feldman, P.T. Matthews, Phys. Rev. 109, 546 (1958).ADSCrossRefzbMATHGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • The COSY-TOF Collaboration
  • M. Abdel-Bary
    • 3
  • S. Abdel-Samad
    • 3
  • R. Bilger
    • 2
  • K-Th. Brinkmann
    • 1
    • 7
  • H. Clement
    • 4
  • E. Doroshkevich
    • 4
  • S. Dshemuchadse
    • 1
  • A. Erhardt
    • 4
  • W. Eyrich
    • 2
  • D. Filges
    • 3
  • A. Filippi
    • 6
  • H. Freiesleben
    • 1
    Email author
  • M. Fritsch
    • 2
  • J. Georgi
    • 2
  • A. Gillitzer
    • 3
  • D. Hesselbarth
    • 3
  • B. Jakob
    • 1
  • L. Karsch
    • 1
  • K. Kilian
    • 3
  • H. Koch
    • 8
  • J. Kreß
    • 4
  • E. Kuhlmann
    • 1
  • S. Marcello
    • 6
  • S. Marwinski
    • 3
  • S. Mauro
    • 8
  • P. Michel
    • 5
  • K. Möller
    • 5
  • H. P. Morsch
    • 3
  • L. Naumann
    • 5
  • N. Paul
    • 3
  • Ch. Plettner
    • 1
  • M. Richter
    • 1
  • J. Ritman
    • 3
  • E. Roderburg
    • 3
  • A. Schamlott
    • 5
  • P. Schönmeier
    • 1
  • W. Schroeder
    • 2
  • M. Schulte-Wissermann
    • 1
  • T. Sefzick
    • 3
  • F. Stinzig
    • 2
  • M. Steinke
    • 8
  • G. Y. Sun
    • 1
  • A. Teufel
    • 2
  • G. J. Wagner
    • 4
  • M. Wagner
    • 2
  • A. Wilms
    • 8
  • P. Wintz
    • 3
  • S. Wirth
    • 2
  1. 1.Institut für Kern- und TeilchenphysikTechnische Universität DresdenDresdenGermany
  2. 2.Physikalisches InstitutUniversität Erlangen-NürnbergErlangenGermany
  3. 3.Institut für KernphysikForschungszentrum JülichJülichGermany
  4. 4.Physikalisches InstitutUniversität TübingenTübingenGermany
  5. 5.Institut für Kern- und HadronenphysikForschungszentrum Dresden-RossendorfDresdenGermany
  6. 6.INFN TorinoTorinoItaly
  7. 7.Helmholtz Institut für Strahlen- und KernphysikRheinische Friedrich-Wilhelms-Universität BonnBonnGermany
  8. 8.Institut für ExperimentalphysikRuhr-Universität BochumBochumGermany

Personalised recommendations