Precise energy of the 9.4 keV gamma transition observed in the 83Rb decay

Abstract

The energy of the 9.4 keV γ-transition observed in the 83Rb decay was established to be 9405.8(3) eV. This energy value was obtained from photon spectrometry measurements of the differences in the energies of closely spaced lines. The result allows one to determine more precisely the energy of conversion electrons of the 9.4 keV transition, which represent a unique tool for energy calibration of the tritium beta spectrum and systematic measurements in the KATRIN neutrino mass determination experiment.

References

  1. 1.

    K. Nakamura, K. Hagiwara et al. (Particle Data Group), J. Phys. G 37, 075021 (2010) http://pdg.lbl.gov.

    ADS  Article  Google Scholar 

  2. 2.

    Ch. Kraus, B. Bornschein, L. Bornschein, J. Bonn, B. Flatt, A. Kovalik, B. Ostrick, E.W. Otten, J.P. Schall, Th. Thümmler, Ch. Weinheimer, Eur. Phys. J. C 40, 447 (2005) DOI:10.1140/epjc/s2005-02139-7.

    ADS  Article  Google Scholar 

  3. 3.

    V.N. Aseev, A.I. Belesev, A.I. Berlev, E.V. Geraskin, A.A. Golubev, N.A. Likhovid, V.M. Lobashev, A.A. Nozik, V.S. Pantuev, V.I. Parfenov, A.K. Skasyrskaya, F.V. Tkachov, S.V. Zadorozhny, Phys. Rev. D 84, 112003 (2011) DOI:10.1103/PhysRevD.84.112003.

    ADS  Article  Google Scholar 

  4. 4.

    J. Angrik, T. Armbrust, KATRIN Design Report 2004, Report NPI ASCR Řež EXP-01/2005 or FZKA Scientific Report 7090, Karlsruhe, http://www-ik.fzk.de/tritium/publications/index.html.

  5. 5.

    R.G.H. Robertson, T.J. Bowles, G.J. Stephenson jr., D.L. Wark, J.F. Wilkerson, Phys. Rev. Lett. 67, 957 (1991) DOI:10.1103/PhysRevLett.67.957.

    ADS  Article  Google Scholar 

  6. 6.

    W. Stoeffl, D.J. Decman, Phys. Rev. Lett. 75, 3237 (1995) DOI:10.1103/PhysRevLett.75.3237.

    ADS  Article  Google Scholar 

  7. 7.

    A. Picard, H. Backe, H. Barth, J. Bonn, B. Degen, Th. Edling, R. Haid, A. Hermanni, P. Leiderer, Th. Loeken, A. Molz, R.B. Moore, A. Osipowicz, E.W. Otten, M. Przyrembel, M. Schrader, M. Steininger, Ch. Weinheimer, Nucl. Instrum. Methods Phys. Res. B 63, 345 (1992) DOI:10.1016/0168-583X(92)95119-C.

    ADS  Article  Google Scholar 

  8. 8.

    A. Picard, H. Backe, J. Bonn, B. Degen, R. Haid, A. Hermanni, P. Leiderer, A. Osipowicz, E.W. Otten, M. Przyrembel, M. Schrader, M. Steininger, Ch. Weinheimer, Z. Phys. A Hadr. Nucl. 342, 74 (1992) DOI:10.1007/BF01294491.

    ADS  Google Scholar 

  9. 9.

    V.N. Aseev, A.I. Belesev, A.I.Berlev, E.V. Geraskin, O.V. Kazachenko, Yu.E. Kuznetsov, V.M. Lobashev, R.P. Ostroumov, N.A. Titov, S.V. Zadorozhny, J. Bonn, B. Bornschein, L. Bornschein, E.W. Otten, M. Przyrembel, Ch. Weinheimer, A. Saenz, Eur. Phys. J. B 10, 39 (2000) DOI:10.1007/s100530050525.

    Google Scholar 

  10. 10.

    B. Bornschein, J. Bonn, L. Bornschein, E.W. Otten, Ch. Weinheimer, J. Low Temp. Phys. 131, 69 (2003) DOI:10.1023/A:1022805313162.

    ADS  Article  Google Scholar 

  11. 11.

    S. Väisälä, G. Graeffe, J. Heinonen, A.A. Delucchi, R.A. Meyer, Phys. Rev. C 13, 372 (1976) DOI:10.1103/PhysRevC.13.372.

    ADS  Article  Google Scholar 

  12. 12.

    F. Rösel, H.M. Fries, K. Alder, H.C. Pauli, At. Data Nucl. Data Tables 21, 91 (1978) DOI:10.1016/0092-640X(78).

    ADS  Article  Google Scholar 

  13. 13.

    V. Pantuev, NRI Troick, private communication (2011).

  14. 14.

    C.E. Moore, Atomic Energy Levels, in National Stand. Ref. Data Ser., Vol. III (National Bureau of Standards, 1958) Cir. 467.

  15. 15.

    K. Codling, R.P. Madden, Phys. Rev. Lett. 12, 106 (1964) DOI:10.1103/PhysRevLett.12.106.

    ADS  Article  Google Scholar 

  16. 16.

    W. Mehlhorn, Z. Phys. 187, 21 (1965) DOI:10.1007/BF01380902.

    ADS  Article  Google Scholar 

  17. 17.

    R. Spohr, T. Bergmark, N. Magnusson, K. Siegbahn, University of Uppsala, Prelim. Rep. Oct. 1967.

  18. 18.

    K. Siegbahn, C. Nordling, G. Johansson, J. Hedman, P.F. Hedén, K. Hamrin, U. Gelius, T. Bergmark, L.O. Werme, R. Manne, Y. Baer, ESCA applied to free molecules (North Holland, Amsterdam, 1969).

  19. 19.

    W.S. Watson, F.J. Morgan, J. Phys. B: Atom. Molec. Phys. 2, 277 (1969) DOI:10.1088/0022-3700/2/2/316.

    Article  ADS  Google Scholar 

  20. 20.

    G. Johansson, J. Hedman, A. Berndtsson, M. Klasson, R. Nilsson, J. Electr. Spec. Rel. Phen. 2, 295 (1973) DOI:10.1018/0368-2048(73)80022-2.

    Article  Google Scholar 

  21. 21.

    G.C. King, M. Tronc, F.H. Read, R.C. Bradford, J. Phys. B: Atom. Molec. Phys. 10, 2479 (1977) DOI:10.1088/0022-3700/10/12/026.

    ADS  Article  Google Scholar 

  22. 22.

    J.A. Bearden, A.F. Burr, Rev. Mod. Phys. 39, 125 (1967) DOI:10.1103/RevModPhys.39.125.

    ADS  Article  Google Scholar 

  23. 23.

    K.D. Sevier, Atom. Data Nucl. Data Tables 24, 323 (1979) DOI:10.1016/0092-640X(79)90012-3.

    ADS  Article  Google Scholar 

  24. 24.

    R.D. Deslattes, E.G. Kessler jr., P. Indelicato, L. de Billy, E. Lindroth, J. Anton, Rev. Mod. Phys. 75, 35 (2003) DOI:10.1103/RevModPhys.75.35.

    ADS  Article  Google Scholar 

  25. 25.

    O. Dragoun, A. Spalek, F.J. Wuilleumier, Czech J. Phys. 54, 833 (2004) DOI:10.1023/B:CJOP.0000038591.13369.e1.

    ADS  Article  Google Scholar 

  26. 26.

    S.L. Ruby, R.G. Klark, L.E. Glendenin, Phys. Lett. A 36, 321 (1971) DOI:10.1016/0375-9601(71)90529-9.

    ADS  Article  Google Scholar 

  27. 27.

    B. Kolk, F. Pleiter, W. Heeringa, Nucl. Phys. A 194, 614 (1972) DOI:10.1016/0375-9474(72)91007-X.

    ADS  Article  Google Scholar 

  28. 28.

    A. Kovalik, V.M. Gorozhankin, J. Phys. G: Nucl. Part. Phys. 19, 1921 (1993) DOI:10.1088/0954-3899/19/11/018.

    ADS  Article  Google Scholar 

  29. 29.

    B. Ostrick, PhD Thesis, Münster University (2008) http://www-ik.fzk.de/tritium/publications/thesis.html.

  30. 30.

    T. Mandel, M. Domke, G. Kaindl, C. Laubschat, M. Priestch, U. Middelmann, K. Horn, Surf. Sci. 162, 453 (1985) DOI:10.1016/0039-6028(85)90935-5.

    ADS  Article  Google Scholar 

  31. 31.

    D. Vénos, O. Dragoun, A. Spalek, M. Vobecký, Nucl. Instrum. Methods A 560, 352 (2006) DOI:10.1016/j.nima.2005.12.213.

    ADS  Article  Google Scholar 

  32. 32.

    K. Debertin, R.G. Helmer, Gamma- and X-ray spectrometry with semiconductor detectors (North-Holland, 1988) p. 194.

  33. 33.

    Y.A. Akovali, Nucl. Data Sheets 74, 461 (1995) DOI:10.1006/ndsh.1995.1014.

    ADS  Article  Google Scholar 

  34. 34.

    R.B. Firestone, V.S. Shirley, C.M. Baglin, S.Y. Frank Chu, J. Zipkin, Table of Isotopes, Eighth edition (Wiley, New York, 1996, 1998 (update)).

  35. 35.

    D. Vénos, A. Spalek, O. Lebeda, M. Fišer, Appl. Radiat. Isot. 63, 323 (2005) DOI:10.1016/j.apradiso.2005.04.011.

    Article  Google Scholar 

  36. 36.

    J.L. Campbell, T. Papp, At. Data Nucl. Data Tables 77, 1 (2001) DOI:10.1006/adnd.2000.0848.

    ADS  Article  Google Scholar 

  37. 37.

    J.L. Campbell, B.M. Millman, J.A. Maxwell, A. Perujo, W.J. Teesdale, Nucl. Instrum. Methods B 9, 71 (1985) DOI:10.1016/0168-583X(85)90780-3.

    ADS  Article  Google Scholar 

  38. 38.

    L.G. Parratt, Phys. Rev. 50, 1 (1936) DOI:10.1103/PhysRev.50.1.

    ADS  Article  Google Scholar 

  39. 39.

    C.H. Shaw, L.G. Parratt, Phys. Rev. 50, 1006 (1936) DOI:10.1103/PhysRev.50.1006.

    ADS  Article  Google Scholar 

  40. 40.

    A. Mühleinsen, M. Budnar, J.Cl. Dousse, Phys. Rev. A 54, 3852 (1996) DOI:10.1103/PhysRevA.54.3852.

    ADS  Article  Google Scholar 

  41. 41.

    J.L. Campbell, A. Perujo, W.J. Teesdale, B.M. Millman, Phys. Rev. A 33, 2410 (1986) DOI:10.1103/PhysRevA.33.2410.

    ADS  Article  Google Scholar 

  42. 42.

    Ch. Herren, J.Cl. Dousse, Phys. Rev. A 53, 717 (1996) DOI:10.1103/PhysRevA.53.717.

    ADS  Article  Google Scholar 

  43. 43.

    Ch. Herren, J.Cl. Dousse, Phys. Rev. A 56, 2750 (1997) DOI:10.1103/PhysRevA.56.2750.

    ADS  Article  Google Scholar 

  44. 44.

    F.P. Larkins, At. Data Nucl. Data Tables 20, 311 (1977) DOI:10.1016/0092-640X(77)90024-9.

    ADS  Article  Google Scholar 

  45. 45.

    ROOT, Object-Oriented Data Analysis Framework, http://root.cern.ch (2011).

  46. 46.

    J.L. Campbell, J.A. Maxwell, T. Papp, G. White, X-ray Spectrom. 26, 223 (1997).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Slezák.

Additional information

Communicated by A.A. Korsheninnikov

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and Permissions

About this article

Cite this article

Slezák, M., Vénos, D., Lebeda, O. et al. Precise energy of the 9.4 keV gamma transition observed in the 83Rb decay. Eur. Phys. J. A 48, 12 (2012). https://doi.org/10.1140/epja/i2012-12012-y

Download citation

Keywords

  • Tritium
  • Systematic Uncertainty
  • Amplitude Ratio
  • Conversion Electron
  • Calibration Line