MeV particles from laser-initiated processes in ultra-dense deuterium D(−1)

  • L. HolmlidEmail author
Open Access
Regular Article - Experimental Physics


Fast particles from laser-induced processes in ultra-dense deuterium D(−1) are studied. The time of flight shows very fast particles, with energy above MeV. Such particles can be delayed or prevented from reaching the detector by inserting thin or thick metal foils in the beam to the detector. This distinguishes them from energetic photons which pass through the foils without delays. Due to the ultra-high density in D(−1) of 1029cm−3, the range for 3 MeV protons in this material is only 700 pm. The fast particles ejected and detected are thus mainly deuterons and protons from the surface of the material. MeV particles are expected to signify fusion processes D+D in the material. The number of fast particles released is determined using the known gain of the photomultiplier. The total number of fast particles formed, assuming isotropic emission, is less than 109 per laser pulse at < 200 mJ pulse energy and intensity 1012W cm−2. A fast shockwave with 30keV u−1 kinetic energy is observed.


Laser Pulse Fast Particle Coulomb Explosion Laser Target Slow Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    S. Badiei, P.U. Andersson, L. Holmlid, Laser Part. Beams 28, 313 (2010).ADSCrossRefGoogle Scholar
  2. 2.
    P.U. Andersson, L. Holmlid, J. Fusion Energy (2012) DOI:10.1007/s10894-011-9468-2 in print.
  3. 3.
    S. Badiei, P.U. Andersson, L. Holmlid, Int. J. Hydr. Energy 34, 487 (2009).CrossRefGoogle Scholar
  4. 4.
    S. Badiei, P.U. Andersson, L. Holmlid, Int. J. Mass Spectrom. 282, 70 (2009).ADSCrossRefGoogle Scholar
  5. 5.
    L. Holmlid, H. Hora, G. Miley, X. Yang, Laser Part. Beams 27, 529 (2009).CrossRefGoogle Scholar
  6. 6.
    S. Badiei, P.U. Andersson, L. Holmlid, Phys. Scr. 81, 045601 (2010).ADSCrossRefGoogle Scholar
  7. 7.
    P.U. Andersson, L. Holmlid, Phys. Lett. A 374, 2856 (2010).ADSCrossRefGoogle Scholar
  8. 8.
    S. Badiei, P.U. Andersson, L. Holmlid, Appl. Phys. Lett. 96, 124103 (2010).ADSCrossRefGoogle Scholar
  9. 9.
    P.U. Andersson, B. Lönn, L. Holmlid, Rev. Sci. Instrum. 82, 013503 (2011).ADSCrossRefGoogle Scholar
  10. 10.
    P.U. Andersson, L. Holmlid, Phys. Lett. A 375, 1344 (2011).ADSCrossRefGoogle Scholar
  11. 11.
    F. Winterberg, J. Fusion Energy 29, 317 (2010).ADSCrossRefGoogle Scholar
  12. 12.
    F. Winterberg, Phys. Lett. A 374, 2766 (2010).ADSCrossRefzbMATHGoogle Scholar
  13. 13.
    L. Holmlid, Int. J. Mass Spectrom. 304, 51 (2011).CrossRefGoogle Scholar
  14. 14.
    J. Zweiback, T.E. Cowan, J.H. Hartley, R. Howell, K.B. Wharton, J.K. Crane, V.P. Yanovsky, G. Hays, R.A. Smith, T. Ditmire, Phys. Plasmas 9, 3108 (2002).ADSCrossRefGoogle Scholar
  15. 15.
    J. Zweiback, R.A. Smith, T.E. Cowan, G. Hays, K.B. Wharton, V.P. Yanovsky, T. Ditmire, Phys. Rev. Lett. 84, 2634 (2000).ADSCrossRefGoogle Scholar
  16. 16.
    National Nuclear Data Center, ENDF database, Brookhaven National Laboratory.Google Scholar
  17. 17.
    National Institute of Standards and Technology NIST, Physics Laboratory, PSTAR program.Google Scholar
  18. 18.
    L. Holmlid, Surf. Sci. 602, 3381 (2008).ADSCrossRefGoogle Scholar
  19. 19.
    G.R. Meima, P.G. Menon, Appl. Catal. A 212, 239 (2001).CrossRefGoogle Scholar
  20. 20.
    M. Muhler, R. Schlögl, G. Ertl, J. Catal. 138, 413 (1992).CrossRefGoogle Scholar
  21. 21.
    R.A. Cecil, B.D. Anderson, R. Madey, Nucl. Instrum. Methods 161, 439 (1979).ADSCrossRefGoogle Scholar
  22. 22.
    P.U. Andersson, L. Holmlid, S.R. Fuelling, J. Supercond. Novel Magn. (2012) DOI:10.1007/s10948-011-1371-6 in print.

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Atmospheric Science, Department of ChemistryUniversity of GothenburgGöteborgSweden

Personalised recommendations