Collinear cluster tripartition as sequential binary fission in the 235U(nth, f ) reaction

Regular Article - Theoretical Physics

Abstract

The mechanism leading to the formation of the observed products of the collinear cluster tripartition (CCT) is carried out within the framework of the model based on the dinuclear system concept. The yield of fission products is calculated using the statistical model based on the driving potentials for the fissionable system. The minima of potential energy of the decaying system correspond to the charge numbers of the products which are produced with large probabilities in the sequential fission (partial case of CCT) of the compound nucleus. The realization of this mechanism supposes the asymmetric fission channel as the first stage of sequential mechanism. It is shown that only the use of the driving potential calculated by the binding energies with the shell correction allows us to explain the yield of the true ternary fission products. The theoretical model is applied to research CCT in the reaction 235U(n th, f). Calculations showed that the heavy products of two fission channels of 236U*, 82Ge* + 154Nd* and 86Se* + 150Ce*, can undergo sequential fission forming the CCT products 70Ni, 74, 76Zn, 80Ge and 84Se with relatively large probabilities which can be observed in coincidence with corresponding partner nucleus. The obtained results can explain some of the observed CCT products Ni and Ge in coincidence with the Ge and Se isotopes in the experiments of the FOBOS group in Joint Institute for Nuclear Research.

Keywords

Compound Nucleus Total Kinetic Energy Charge Asymmetry Charge Number Driving Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Yu.V. Pyatkov et al., Phys. At. Nucl. 66, 1631 (2003) from Yad. Fiz. 66CrossRefGoogle Scholar
  2. 2.
    Yu.V. Pyatkov et al., Eur. Phys. J. A 45, 29 (2010).ADSCrossRefGoogle Scholar
  3. 3.
    Yu.V. Pyatkov et al., Phys. At. Nucl. 73, 1309 (2010) D.V. Kamanin, JINR Preprint 15-2007-182, Dubna, 2007CrossRefGoogle Scholar
  4. 4.
    Yu.V. Pyatkov et al., Int. J. Mod. Phys. E 20, 1008 (2011).ADSCrossRefGoogle Scholar
  5. 5.
    K. Manimaran, M. Balasubramaniam, Phys. Rev. C 79, 024610 (2009).ADSCrossRefGoogle Scholar
  6. 6.
    K. Manimaran, M. Balasubramaniam, Eur. Phys. J. A 45, 293 (2010).ADSCrossRefGoogle Scholar
  7. 7.
    N.V. Antonenko et al., Phys. Lett. B 319, 415 (1993).ADSCrossRefGoogle Scholar
  8. 8.
    N.V. Antonenko et al., Phys. Rev. C 51, 2635 (1995).ADSCrossRefGoogle Scholar
  9. 9.
    V.V. Volkov, Acta Phys. Pol. B 30, 1517 (1999).ADSGoogle Scholar
  10. 10.
    A.K. Nasirov et al., Nucl. Phys. A 759, 342 (2005).ADSCrossRefGoogle Scholar
  11. 11.
    A.V. Andreev, G.G. Adamian, N.V. Antonenko, S.P. Ivanova, S.N. Kuklin, W. Scheid, Eur. Phys. J. A 30, 579 (2006).ADSCrossRefGoogle Scholar
  12. 12.
    G.G. Adamian, R.V. Jolos, A.K. Nasirov, Z. Phys. A 347, 203 (1994).ADSCrossRefGoogle Scholar
  13. 13.
    A.K. Nasirov et al., Phys. Rev. C 79, 024606 (2009).ADSCrossRefGoogle Scholar
  14. 14.
    G. Royer, B. Remaud, J. Phys. G: Nucl. Phys. 10, 1541 (1984).ADSCrossRefGoogle Scholar
  15. 15.
    D.J. Hinde et al., Phys. Rev. C 45, 1229 (1992).ADSCrossRefGoogle Scholar
  16. 16.
    L.G. Moretto, J.S. Sventek, Phys. Lett. B 58, 26 (1975).ADSCrossRefGoogle Scholar
  17. 17.
    J.A. Maruhn, W. Greiner, Phys. Rev. C 13, 2404 (1976).ADSCrossRefGoogle Scholar
  18. 18.
    R.K. Gupta, W. Scheid, W. Greiner, Phys. Rev. Lett. 35, 353 (1975).ADSCrossRefGoogle Scholar
  19. 19.
    V.M. Strutinsky, Nucl. Phys. A 95, 420 (1967).ADSCrossRefGoogle Scholar
  20. 20.
    V.M. Strutinsky, Nucl. Phys. A 122, 1 (1968).ADSCrossRefGoogle Scholar
  21. 21.
    W.D. Myers, W.J. Swiatecki, Ark. Fys. 36, 343 (1967).Google Scholar
  22. 22.
    T. Johansson, S.G. Nilsson, Z. Szymanski, Ann. Phys. (Paris) 5, 377 (1970).Google Scholar
  23. 23.
    G. Audi et al., Nucl. Phys. A 729, 337 (2003).ADSCrossRefGoogle Scholar
  24. 24.
    P. Möller, J.R. Nix, At. Data Nucl. Data Tables 39, 213 (1988).ADSCrossRefGoogle Scholar
  25. 25.
    V.V. Pashkevich, A.Ya. Rusanov, Nucl. Phys. A 810, 77 (2008).ADSCrossRefGoogle Scholar
  26. 26.
    Yu.V. Pyatkov, V.G. Tishchenko, V.V. Pashkevich, V.A. Maslov, D.V. Kamanin, I.V. Kljuev, W.H. Trzaska, Nucl. Instrum. Methods A 488, 381 (2002).ADSCrossRefGoogle Scholar
  27. 27.
    S. Raman et al., At. Data Nucl. Data Tables 36, 1 (1987).ADSCrossRefGoogle Scholar
  28. 28.
    A.J. Sierk, Phys. Rev. C 33, 2039 (1986).ADSCrossRefGoogle Scholar
  29. 29.
    A.V. Andreev et al., Yad. Fiz. 70, 1 (2007).Google Scholar
  30. 30.
    A.A. Goverdovsky, V.F. Mitrofanov, V.A. Khryachkov, Yad. Fiz. 58, 1546 (1995) Phys. At. Nucl. 58Google Scholar
  31. 31.
    A.B. Migdal, Theory of the Finite Fermi Systems and Properties of Atomic Nuclei (Nauka, Moscow, 1983).Google Scholar
  32. 32.
    C.Y. Wong, Phys. Rev. Lett. 31, 766 (1973).ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • R. B. Tashkhodjaev
    • 1
  • A. K. Nasirov
    • 1
    • 2
  • W. Scheid
    • 3
  1. 1.Institute of Nuclear PhysicsTashkentUzbekistan
  2. 2.Joint Institute for Nuclear ResearchDubnaRussia
  3. 3.Institut für Theoretische Physik der Justus-Liebig-UniversitätGiessenGermany

Personalised recommendations