Advertisement

Half-life measurements of 137, 139Cs excited nuclear states

  • B. RoussièreEmail author
  • M. A. Cardona
  • I. Deloncle
  • D. Hojman
  • J. Kiener
  • P. Petkov
  • D. Tonev
  • Ts. Venkova
  • ALTO Collaboration
Regular Article - Experimental Physics

Abstract

A fast-timing setup has been developed to measure the nuclear-state half-lives of neutron-rich nuclei. The first on-line measurements were performed on 137, 139Cs obtained from the β decay of 137, 139Xe. These neutron-rich Xe nuclei were produced by the 238U photofission induced by the 50MeV electron beam delivered by the ALTO facility. The half-lives of the first excited state in 137Cs and of six excited states in 139Cs were measured for the first time. Taking into account new information given by the deduced transition probabilities, we discuss the structure of the first excited states in 137, 139Cs : it is shown that, in both nuclei, the first excited \(\tfrac{5} {2}^ +\) level corresponds mainly to the one-proton state issued from the π2d 5/2 orbital and that the most probable spin values for the states located at 289.8, 393.5, and 393.8keV in 139Cs are \(\tfrac{5} {2}^ +\), \(\tfrac{3} {2}^ +\), and \(\tfrac{1} {2}^ +\), respectively.

Keywords

Time Spectrum Probable Spin Nuclear State Deconvolution Method Reduce Transition Probability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    H. Mach, R.L. Gill, M. Moszyński, Nucl. Instrum. Methods Phys. Res. A 280, 49 (1989).ADSCrossRefGoogle Scholar
  2. 2.
    E.R. White et al., Phys. Rev. C 76, 057303 (2007).ADSCrossRefGoogle Scholar
  3. 3.
    E.V.D. van Loef, P. Dorenbos, C.W.E. van Eijk, K.W. Krämer, H.U. Güdel, Appl. Phys. Lett. 79, 1573 (2001).ADSCrossRefGoogle Scholar
  4. 4.
    E.V.D. van Loef, P. Dorenbos, C.W.E. van Eijk, K.W. Krämer, H.U. Güdel, Nucl. Instrum. Methods Phys. Res. A 486, 254 (2002).ADSCrossRefGoogle Scholar
  5. 5.
    S. Essabaa et al., Nucl. Instrum. Methods Phys. Res. B 204, 780 (2003).ADSCrossRefGoogle Scholar
  6. 6.
    S. Sundell, H.L. Ravn and the ISOLDE Collaboration, Nucl. Instrum. Methods Phys. Res. B 70, 160 (1992).ADSCrossRefGoogle Scholar
  7. 7.
    J. Le Bris, Internal Report IPNO 0603 (English version), Rapport interne IPNO 0504 (French version).Google Scholar
  8. 8.
    I. Deloncle, in preparationGoogle Scholar
  9. 9.
    I. Deloncle, M.-G. Porquet, M. Dziri-Marce, Nucl. Instrum. Methods Phys. Res. A 357, 150 (1995).ADSCrossRefGoogle Scholar
  10. 10.
    M. Moszyński, H. Mach, Nucl. Instrum. Methods Phys. Res. A 277, 407 (1989).ADSCrossRefGoogle Scholar
  11. 11.
    A.A. Sonzogni, Nucl. Data Sheets 98, 515 (2003).ADSCrossRefGoogle Scholar
  12. 12.
    J. Pouthas, S. Agarwal, M. Engrand, C. Pisani, Nucl. Instrum. Methods 145, 445 (1977).ADSCrossRefGoogle Scholar
  13. 13.
    E. Browne, J.K. Tuli, Nucl. Data Sheets 108, 2173 (2007).ADSCrossRefGoogle Scholar
  14. 14.
    E. Monnand, R. Brissot, J. Crancon, C. Ristori, F. Schussler, A. Moussa, J. Phys. (Paris) 36, 1 (1975).Google Scholar
  15. 15.
    T.W. Burrows, Nucl. Data Sheets 92, 623 (2001).ADSCrossRefGoogle Scholar
  16. 16.
    E. Achterberg et al., Phys. Rev. C 5, 1759 (1972).ADSCrossRefGoogle Scholar
  17. 17.
    B.H. Wildenthal, E. Newman, R.L. Auble, Phys. Rev. C 3, 1199 (1971).ADSCrossRefGoogle Scholar
  18. 18.
    A. Nowak et al., Eur. Phys. J. A 6, 1 (1999).ADSCrossRefGoogle Scholar
  19. 19.
    S.H. Faller et al., Phys. Rev. C 38, 905 (1988).ADSCrossRefGoogle Scholar
  20. 20.
    D.M. Symochko, E. Browne, J.K. Tuli, Nucl. Data Sheets 110, 2945 (2009).ADSCrossRefGoogle Scholar
  21. 21.
    S. Ohya, Nucl. Data Sheets 111, 1619 (2010).ADSCrossRefGoogle Scholar
  22. 22.
    S. Ohya, Nucl. Data Sheets 102, 547 (2004).ADSCrossRefGoogle Scholar
  23. 23.
    J. Katakura, Nucl. Data Sheets 86, 955 (1999).ADSCrossRefGoogle Scholar
  24. 24.
    K. Kitao, M. Oshima, Nucl. Data Sheets 77, 1 (1996).ADSCrossRefGoogle Scholar
  25. 25.
    Y. Tendow, Nucl. Data Sheets 77, 631 (1996).ADSCrossRefGoogle Scholar
  26. 26.
    Yu. Khazov, I. Mitropolsky, A. Rodionov, Nucl. Data Sheets 107, 2715 (2006).ADSCrossRefGoogle Scholar
  27. 27.
    S. Rab, Nucl. Data Sheets 75, 491 (1995).ADSCrossRefGoogle Scholar
  28. 28.
    B. Singh, A.A. Rodionov, Yu.L. Khazov, Nucl. Data Sheets 109, 517 (2008).ADSCrossRefGoogle Scholar
  29. 29.
    J.K. Tuli, D.F. Winchell, Nucl. Data Sheets 92, 277 (2001).ADSCrossRefGoogle Scholar
  30. 30.
    J.K. Tuli, Nucl. Data Sheets 94, 605 (2001).ADSCrossRefGoogle Scholar
  31. 31.
    E. Browne, J.K. Tuli, Nucl. Data Sheets 110, 507 (2009).ADSCrossRefGoogle Scholar
  32. 32.
    N. Nica, Nucl. Data Sheets 110, 749 (2009).ADSCrossRefGoogle Scholar
  33. 33.
    B. Singh, Nucl. Data Sheets 102, 1 (2004).ADSCrossRefGoogle Scholar
  34. 34.
    B. Singh, Nucl. Data Sheets 110, 1 (2009).ADSCrossRefGoogle Scholar
  35. 35.
    R.G. Helmer, Nucl. Data Sheets 107, 507 (2006).ADSCrossRefGoogle Scholar
  36. 36.
    D.C. Choudhury, J.N. Friedman, Phys. Rev. C 3, 1619 (1971).ADSCrossRefGoogle Scholar
  37. 37.
    S.H. Liu et al., Phys. Rev. C 80, 044314 (2009).ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • B. Roussière
    • 1
    Email author
  • M. A. Cardona
    • 2
    • 3
    • 4
  • I. Deloncle
    • 5
  • D. Hojman
    • 2
    • 4
  • J. Kiener
    • 5
  • P. Petkov
    • 6
  • D. Tonev
    • 6
  • Ts. Venkova
    • 6
  • ALTO Collaboration
  1. 1.Institut de Physique NucléaireIN2P3/CNRS/Université Paris-SudOrsayFrance
  2. 2.Departamento de FísicaComisión Nacional de Energía AtómicaBuenos AiresArgentina
  3. 3.Universidad Nacional de General San MartínSan MartínArgentina
  4. 4.CONICETBuenos AiresArgentina
  5. 5.Centre de Spectrométrie Nucléaire et de Spectrométrie de MasseIN2P3/CNRS/Université Paris-SudOrsayFrance
  6. 6.Institute for Nuclear Research and Nuclear EnergyBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations