Processes e+e → π00′) γ in extended NJL model

  • A. B. ArbuzovEmail author
  • E. A. Kuraev
  • M. K. Volkov
Regular Article - Theoretical Physics


The processes of electron-positron annihilation into π0γ and into π′(1300)γ are considered within an extended NJL model. The intermediate vector mesons ρ 0, ω ρ′(1450), and ω(1420) are taken into account. The latter two mesons are treated as the first radial excited states. They are incorporated into the NJL model by means of a polynomial form factor. Numerical predictions for the cross-sections of these processes are received for the center-of-mass energies below 2 GeV. Our results for the π0γ production are in agreement with experimental data obtained in the energy region 600–1020 MeV.


Feynman Diagram Vector Meson Transition Form Factor Triangular Diagram Vector Meson Dominance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    M.K. Volkov, C. Weiss, Phys. Rev. D 56, 221 (1997).ADSCrossRefGoogle Scholar
  2. 2.
    M.K. Volkov, Phys. Atom. Nucl. 60, 1920 (1997).ADSGoogle Scholar
  3. 3.
    M.K. Volkov, V.L. Yudichev, Phys. Part. Nucl. 31, 282 (2000).Google Scholar
  4. 4.
    A.B. Arbuzov, E.A. Kuraev, M.K. Volkov, Phys. Rev. C 83, 048201 (2011).ADSCrossRefGoogle Scholar
  5. 5.
    CMD-2 Collaboration (R.R. Akhmetshin et al.), Phys. Lett. B 562, 173 (2003).ADSCrossRefGoogle Scholar
  6. 6.
    S.I. Dolinsky, V.P. Druzhinin, M.S. Dubrovin et al., Phys. Rep. 202, 99 (1991).ADSCrossRefGoogle Scholar
  7. 7.
    N.N. Achasov, A.A. Kozhevnikov, Int. J. Mod. Phys. A 7, 4825 (1992).ADSCrossRefGoogle Scholar
  8. 8.
    M.N. Achasov et al., Phys. Lett. B 559, 171 (2003).ADSCrossRefGoogle Scholar
  9. 9.
    M.K. Volkov, Fiz. Elem. Chast. Atom. Yadra 17, 433 (1986).Google Scholar
  10. 10.
    M.K. Volkov, Phys. Part. Nucl. 24, 35 (1993).ADSGoogle Scholar
  11. 11.
    D. Ebert, H. Reinhardt, M.K. Volkov, Prog. Part. Nucl. Phys. 33, 1 (1994).ADSCrossRefGoogle Scholar
  12. 12.
    M.K. Volkov, D. Ebert, M. Nagy, Int. J. Mod. Phys. A 13, 5443 (1998).ADSCrossRefGoogle Scholar
  13. 13.
    D. Ebert, Yu.L. Kalinovsky, L. Munchow, M.K. Volkov, Int. J. Mod. Phys. A 8, 1295 (1993).ADSCrossRefGoogle Scholar
  14. 14.
    A.B. Arbuzov, E.A. Kuraev, M.K. Volkov, Phys. Rev. C 82, 068201 (2010).ADSCrossRefGoogle Scholar
  15. 15.
    M. Gronau, J.L. Rosner, Phys. Rev. D 79, 074006 (2009).ADSCrossRefGoogle Scholar
  16. 16.
    M.K. Volkov, A.E. Radzhabov, Phys. Usp. 49, 551 (2006).ADSCrossRefGoogle Scholar
  17. 17.
    M.K. Volkov, D. Ebert, Yad. Fiz. 36, 1265 (1982).Google Scholar
  18. 18.
    D. Ebert, M.K. Volkov, Z. Phys. C 16, 205 (1983).ADSCrossRefGoogle Scholar
  19. 19.
    Particle Data Group (K. Nakamura et al.), J. Phys. G 37, 075021 (2010).ADSCrossRefGoogle Scholar
  20. 20.
    D. Ebert, H. Reinhardt, Nucl. Phys. B 271, 188 (1986).ADSGoogle Scholar
  21. 21.
    Yu.M. Bystritskiy, E.A. Kuraev, M. Secansky et al., Int. J. Mod. Phys. A 24, 2629 (2009).ADSzbMATHCrossRefGoogle Scholar
  22. 22.
    M.N. Achasov et al., Eur. Phys. J. C 12, 25 (2000).ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Bogoliubov Laboratory of Theoretical PhysicsJINRDubnaRussia
  2. 2.Department of Higher MathematicsUniversity of DubnaDubnaRussia

Personalised recommendations