Advertisement

Exploration of hyperfine interaction between constituent quarks via η productions

  • Jun HeEmail author
  • S. G. Yuan
  • H. S. Xu
Regular Article - Theoretical Physics
  • 51 Downloads

Abstract

In this work, the different exchange freedom, one gloun, one pion or Goldstone boson, in constituent quark model is investigated, which is responsible to the hyperfine interaction between constituent quarks, via the combined analysis of the η production processes, π pηn and γpηp. With the Goldstone-boson exchange, as well as the one-gluon or one-pion exchange, both the spectrum and observables, such as, the differential cross-section and polarized beam asymmetry, are fitted to the suggested values of Particle Data Group and the experimental data. The first two types of exchange freedoms give acceptable description of the spectrum and observables while the one-pion exchange cannot describe the observables and spectrum simultaneously, so it can be excluded. The experimental data for the two processes considered here strongly support the mixing angles for two lowest S 11 sates and D 13 states as about −30° and 6°, respectively.

Keywords

Quark Model Particle Data Group Helicity Amplitude Constituent Quark Nucleon Resonance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    P.O. Bowman et al., Phys. Rev. D 71, 054507 (2005).ADSCrossRefGoogle Scholar
  2. 2.
    D. Melikhov, S. Simula, Eur. Phys. J. C 37, 437 (2004).ADSCrossRefGoogle Scholar
  3. 3.
    D. Pirjol, C. Schat, Phys. Rev. Lett. 102, 152002 (2009).ADSCrossRefGoogle Scholar
  4. 4.
    D. Pirjol, C. Schat, Phys. Rev. D 82, 114005 (2010).ADSCrossRefGoogle Scholar
  5. 5.
    N. Isgur, G. Karl, Phys. Rev. D 18, 4187 (1978).ADSCrossRefGoogle Scholar
  6. 6.
    N. Isgur, G. Karl, Phys. Rev. D 19, 2653 (1979).ADSCrossRefGoogle Scholar
  7. 7.
    S. Capstick, N. Isgur, Phys. Rev. D 34, 2809 (1986).ADSCrossRefGoogle Scholar
  8. 8.
    R. Koniuk, N. Isgur, Phys. Rev. D 21, 1868 (1980).ADSCrossRefGoogle Scholar
  9. 9.
    S. Capstick, W. Roberts, Prog. Part. Nucl. Phys. 45, 241 (2000).ADSCrossRefGoogle Scholar
  10. 10.
    T. Melde, W. Plessas, B. Sengl, Phys. Rev. C 76, 025204 (2007).ADSCrossRefGoogle Scholar
  11. 11.
    K.-S. Choi, W. Plessas, R.F. Wagenbrunn, Phys. Rev. C 81, 028201 (2010).ADSCrossRefGoogle Scholar
  12. 12.
    L.Y. Glozman, D.O. Riska, Phys. Rep. 268, 263 (1996).ADSCrossRefGoogle Scholar
  13. 13.
    A. Manohar, H. Georgi, Nucl. Phys. B 234, 189 (1984).ADSCrossRefGoogle Scholar
  14. 14.
    H. Collins, H. Georgi, Phys. Rev. D 59, 094010 (1999).ADSCrossRefGoogle Scholar
  15. 15.
    K.F. Liu et al., Phys. Rev. D 59, 112001 (1999).ADSCrossRefGoogle Scholar
  16. 16.
    K.F. Liu et al., Phys. Rev. D 61, 118502 (2000).ADSCrossRefGoogle Scholar
  17. 17.
    N. Isgur, Phys. Rev. D 61, 118501 (2000).ADSCrossRefGoogle Scholar
  18. 18.
    F. Okiharu, H. Suganuma, T.T. Takahashi, Phys. Rev. D 72, 014505 (2005).ADSCrossRefGoogle Scholar
  19. 19.
    F. Okiharu, H. Suganuma, T.T. Takahashi, Phys. Rev. Lett. 94, 192001 (2005).ADSCrossRefGoogle Scholar
  20. 20.
    H. Suganuma, T. Iritani, F. Okiharu, T.T. Takahashi, A. Yamamoto, arXiv:1103.4015 [hep-lat]
  21. 21.
    F. Wang, J.L. Ping, H.R. Pang, J.T. Goldman, Mod. Phys. Lett. A 18, 356 (2003).ADSCrossRefGoogle Scholar
  22. 22.
    N. Isgur, Phys. Rev. D 62, 054026 (2000).ADSCrossRefGoogle Scholar
  23. 23.
    J. Chizma, G. Karl, Phys. Rev. D 68, 054007 (2003).ADSCrossRefGoogle Scholar
  24. 24.
    J. He, Y.B. Dong, Phys. Rev. D 68, 017502 (2003).ADSCrossRefGoogle Scholar
  25. 25.
    J. He, Y.-B. Dong, Nucl. Phys. A 725, 201 (2003).ADSCrossRefGoogle Scholar
  26. 26.
    Z.-P. Li, Phys. Rev. C 52, 1648 (1995).ADSCrossRefGoogle Scholar
  27. 27.
    Q. Zhao, Z.-P. Li, C. Bennhold, Phys. Rev. C 58, 2393 (1998).ADSCrossRefGoogle Scholar
  28. 28.
    Z.-P. Li, B. Saghai, Nucl. Phys. A 644, 345 (1998).ADSCrossRefGoogle Scholar
  29. 29.
    B. Saghai, Z.-P. Li, Eur. Phys. J. A 11, 217 (2001).ADSCrossRefGoogle Scholar
  30. 30.
    Z.-P. Li, J. Bao, Europhys. Lett. 39, 599 (1997).MathSciNetADSCrossRefGoogle Scholar
  31. 31.
    J. He, B. Saghai, Z. Li, Phys. Rev. C 78, 035204 (2008).ADSCrossRefGoogle Scholar
  32. 32.
    J. He, B. Saghai, Z. Li, Q. Zhao, J. Durand, Eur. Phys. J. A 35, 321 (2008).ADSCrossRefGoogle Scholar
  33. 33.
    J. He, B. Saghai, Phys. Rev. C 80, 015207 (2009).ADSCrossRefGoogle Scholar
  34. 34.
    J. He, B. Saghai, Phys. Rev. C 82, 035206 (2010).ADSCrossRefGoogle Scholar
  35. 35.
    L.A. Copley, G. Karl, E. Obryk, Nucl. Phys. B 13, 303 (1969).ADSCrossRefGoogle Scholar
  36. 36.
    R.F. Wagenbrunn, L.Y. Glozman, W. Plessas, K. Varga, Nucl. Phys. A 666 (2000).Google Scholar
  37. 37.
    B. Krusche et al., Phys. Rev. Lett. 74, 3736 (1995).ADSCrossRefGoogle Scholar
  38. 38.
    M. Williams et al., Phys. Rev. C 80, 045213 (2009).ADSCrossRefGoogle Scholar
  39. 39.
    V. Crede et al., Phys. Rev. Lett. 94, 012004 (2005).ADSCrossRefGoogle Scholar
  40. 40.
    V. Crede et al., Phys. Rev. C 80, 055202 (2009).ADSCrossRefGoogle Scholar
  41. 41.
    T. Nakabayashi et al., Phys. Rev. C 74, 035202 (2006).ADSCrossRefGoogle Scholar
  42. 42.
    O. Bartalini et al., Eur. Phys. J. A 33, 169 (2007).ADSCrossRefGoogle Scholar
  43. 43.
    D. Elsner et al., Eur. Phys. J. A 33, 147 (2007).ADSCrossRefGoogle Scholar
  44. 44.
    S. Prakhov et al., Phys. Rev. C 72, 015203 (2005).ADSCrossRefGoogle Scholar
  45. 45.
    W. Deinet et al., Nucl. Phys. B 11, 495 (1969).ADSCrossRefGoogle Scholar
  46. 46.
    W.B. Richards et al., Phys. Rev. D 1, 10 (1970).ADSCrossRefGoogle Scholar
  47. 47.
    N.C. Debenham et al., Phys. Rev. D 12, 2545 (1975).ADSCrossRefGoogle Scholar
  48. 48.
    R.M. Brown et al., Nucl. Phys. B 153, 89 (1979).ADSCrossRefGoogle Scholar
  49. 49.
    M.B. Dugger et al., Phys. Rev. Lett. 89, 222002 (2002).ADSCrossRefGoogle Scholar
  50. 50.
    Particle Data Group (K. Nakamura et al.), J. Phys. G 37, 075021 (2010).ADSCrossRefGoogle Scholar
  51. 51.
    Z.Y. Zhang, Y.W. Yu, P.N. Shen, L.R. Dai, A. Faessler, U. Straub, Nucl. Phys. A 625, 59 (1997).ADSCrossRefGoogle Scholar
  52. 52.
    F. Huang, Z.Y. Zhang, Y.W. Yu, B.S. Zou, Phys. Lett. B 586, 69 (2004) [arXiv:hep-ph/0310040]ADSCrossRefGoogle Scholar
  53. 53.
    M. Creutz, Monographs on Mathematical Physics (Cambridge University Press, Cambridge, UK).Google Scholar
  54. 54.
    L. Tiator, C. Bennhold, S.S. Kamalov, Nucl. Phys. A 580, 455 (1994).ADSCrossRefGoogle Scholar
  55. 55.
    M. Kirchbach, L. Tiator, Nucl. Phys. A 604, 385 (1996).ADSCrossRefGoogle Scholar
  56. 56.
    S.-L. Zhu, Phys. Rev. C 61, 065205 (2000).ADSCrossRefGoogle Scholar
  57. 57.
    V.G.J. Stoks, T.A. Rijken, Phys. Rev. C 59, 3009 (1999).ADSCrossRefGoogle Scholar
  58. 58.
    B. Saghai, Z. Li, Few Body Syst. 47, 105 (2010).ADSCrossRefGoogle Scholar
  59. 59.
    A.J.G. Hey, P.J. Litchfield, R.J. Cashmore, Nucl. Phys. B 95, 516 (1975).ADSCrossRefGoogle Scholar
  60. 60.
    L.Y. Glozman, arXiv: nul-th/9909021
  61. 61.
    A.V. Sarantseva, V.A. Nikonov, A.V. Anisovich, E. Klempt, U. Thoma, Eur. Phys. J. A 25, 441 (2005).ADSCrossRefGoogle Scholar
  62. 62.
    V.A. Nikonov, A.V. Anisovich, E. Klempt, A.V. Sarantseva, U. Thoma, Phys. Lett. B 662, 245 (2008).ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Nuclear theory group, Institute of Modern PhysicsChinese Academy of SciencesLanzhouChina
  2. 2.Research Center for Hadron and CSR PhysicsInstitute of Modern Physics of CAS and Lanzhou UniversityLanzhouChina
  3. 3.Graduate University of Chinese Academy of SciencesBeijingChina

Personalised recommendations