Advertisement

A new cluster model interpretation of the anomalous lifetime of 14C

  • D. RobsonEmail author
Regular Article - Theoretical Physics

Abstract

A new cluster model solution to the long-standing nuclear structure problem of describing the anomalously long lifetime of 14C is presented. Related beta-decay data for 14O to states in 14N, gamma-decay data between low-lying positive parity states in 14N and the elastic and inelastic magnetic dipole electron scattering from 14N data are all shown to be very accurately described by the model. The shapes of the beta spectra for the A = 14 system are also well reproduced by the model. The model invokes four-nucleon tetrahedral symmetric spatial correlations arising from three- and four-nucleon interactions, which yields a high degree of SU(4) singlet structure for the clusters and a tetrahedral intrinsic shape for the doubly magic 16O ground state. The large quadrupole moment of the 14N ground state is obtained here for the first time and arises because of the almost 100% d-wave deuteron-like-hole cluster structure inherent in the model.

Keywords

Shell Model Cluster Model Shell Model Calculation Inelastic Electron Radiative Width 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    D.R. Inglis, Rev. Mod. Phys. 25, 390 (1953).ADSCrossRefGoogle Scholar
  2. 2.
    B. Jancovich, I. Talmi, Phys. Rev. 95, 289 (1954).ADSCrossRefGoogle Scholar
  3. 3.
    W.M. Visscher, R.A. Ferrell, Phys. Rev. 107, 781 (1957).ADSCrossRefGoogle Scholar
  4. 4.
    L. Zamick, D.C. Zheng, M. Fayache, Phys. Rev. C 51, 1253 (1995).ADSCrossRefGoogle Scholar
  5. 5.
    M. Fayache, L. Zamick, H. Müther, Phys. Rev. C 60, 067305 (1999).ADSCrossRefGoogle Scholar
  6. 6.
    R. Sherr et al., Phys. Rev. 100, 945 (1955).ADSCrossRefGoogle Scholar
  7. 7.
    J.P. Elliott, Phil. Mag. 1, 503 (1956).ADSCrossRefGoogle Scholar
  8. 8.
    I. Talmi, Phys. Rev. C 39, 284 (1989).ADSCrossRefGoogle Scholar
  9. 9.
    S. Aroua et al., Nucl. Phys. A 720, 71 (2003).ADSCrossRefGoogle Scholar
  10. 10.
    J.W. Holt, N. Kaiser, W. Weise, Phys. Rev. C 79, 054331 (2009) and references thereinADSCrossRefGoogle Scholar
  11. 11.
    P. Maris et al., Phys. Rev. Lett. 106, 202502 (2011).ADSCrossRefGoogle Scholar
  12. 12.
    H. Genz et al., Z. Phys. A 341, 9 (1991).ADSCrossRefGoogle Scholar
  13. 13.
    R.L. Huffman et al., Phys. Rev. C 35, 1 (1987).ADSCrossRefGoogle Scholar
  14. 14.
    K. Amos, D. Koetsier, D. Kurath, Phys. Rev. C 40, 374 (1989).ADSCrossRefGoogle Scholar
  15. 15.
    J.A. Wheeler, Phys. Rev. 52, 1083 (1937).ADSzbMATHCrossRefGoogle Scholar
  16. 16.
    D.M. Dennison, Phys. Rev. 57, 454 (1940).ADSCrossRefGoogle Scholar
  17. 17.
    D.M. Dennison, Phys. Rev. 96, 374 (1954).ADSCrossRefGoogle Scholar
  18. 18.
    S.L. Kameny, Phys. Rev. 103, 358 (1956).ADSCrossRefGoogle Scholar
  19. 19.
    M. Freer, Rep. Prog. Phys. 70, 2149 (2007).ADSCrossRefGoogle Scholar
  20. 20.
    D. Robson, Nucl. Phys. A 308, 381 (1978).ADSCrossRefGoogle Scholar
  21. 21.
    D. Robson, Prog. Part. Nucl. Phys. 8, 257 (1982).ADSCrossRefGoogle Scholar
  22. 22.
    D. Robson, Phys. Rev. D 35, 1018, 1029 (1987).ADSGoogle Scholar
  23. 23.
    C. Long, D. Robson, Nucl. Phys. A 474, 627 (1987).ADSCrossRefGoogle Scholar
  24. 24.
    J.S. McCarthy, I. Sick, R.R. Whitney, Phys. Rev. C 15, 1396 (1977).ADSCrossRefGoogle Scholar
  25. 25.
    J.A. Nolen, J.P. Schiffer, Ann. Rev. Nucl. Sci. 19, 471 (1969).ADSCrossRefGoogle Scholar
  26. 26.
    I.S. Towner, J.C. Hardy, Phys. Rev. C 72, 055501 (2005).ADSCrossRefGoogle Scholar
  27. 27.
    W.T. Chou, E.K. Warburton, B.A. Brown, Phys. Rev. C 47, 163 (1993).ADSCrossRefGoogle Scholar
  28. 28.
    F.E. Wietfeldt et al., Phys. Rev. C 52, 1028 (1995).ADSCrossRefGoogle Scholar
  29. 29.
    G.S. Sidhu, J.B. Gerhart, Phys. Rev. 148, 1024 (1966) see also ref. 24ADSCrossRefGoogle Scholar
  30. 30.
    A. Garcia, B.A. Brown, Phys. Rev. C 52, 3416 (1995).ADSCrossRefGoogle Scholar
  31. 31.
    E.K. Warburton, B.A. Brown, Phys. Rev. C 46, 923 (1992).ADSCrossRefGoogle Scholar
  32. 32.
    A. Negret et al., Phys. Rev. Lett. 97, 062502 (2006).ADSCrossRefGoogle Scholar
  33. 33.
    H. Crannell et al., Nucl. Phys. A 278, 253 (1977).ADSCrossRefGoogle Scholar
  34. 34.
    R.S. Willey, Nucl. Phys. 40, 529 (1963).CrossRefGoogle Scholar
  35. 35.
    R.P. Singhal et al., Phys. Rev. C 28, 513 (1983).ADSCrossRefGoogle Scholar
  36. 36.
    R.L. Huffman et al., Phys. Lett. B 139, 249 (1984).ADSCrossRefGoogle Scholar
  37. 37.
    N.J. Stone, At. Data Nucl. Data Tables 90, 75 (2005).ADSCrossRefGoogle Scholar
  38. 38.
    J.W. de Vries et al., Phys. Lett. B 205, 22 (1988).ADSCrossRefGoogle Scholar
  39. 39.
    F. Ajzenberg-Selove, Nucl. Phys. A 523, 1 (1991) Table 2ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of PhysicsFlorida State UniversityTallahasseeUSA

Personalised recommendations