Quasi-free photoproduction of η-mesons off the deuteron

  • The CBELSA/TAPS Collaboration
  • I. Jaegle
  • B. Krusche
  • A. V. Anisovich
  • J. C. S. Bacelar
  • B. Bantes
  • O. Bartholomy
  • D. E. Bayadilov
  • R. Beck
  • Y. A. Beloglazov
  • R. Castelijns
  • V. Crede
  • M. Dieterle
  • H. Dutz
  • D. Elsner
  • R. Ewald
  • F. Frommberger
  • C. Funke
  • R. Gothe
  • R. Gregor
  • A. B. Gridnev
  • E. Gutz
  • W. Hillert
  • S. Höffgen
  • P. Hoffmeister
  • I. Horn
  • J. Junkersfeld
  • H. Kalinowsky
  • S. Kammer
  • I. Keshelashvili
  • V. Kleber
  • Frank Klein
  • Friedrich Klein
  • E. Klempt
  • M. Konrad
  • M. Kotulla
  • M. Lang
  • H. Löhner
  • I. V. Lopatin
  • S. Lugert
  • Y. Maghrbi
  • D. Menze
  • T. Mertens
  • J. G. Messchendorp
  • V. Metag
  • V. A. Nikonov
  • M. Nanova
  • D. V. Novinski
  • R. Novotny
  • M. Oberle
  • M. Ostrick
  • L. M. Pant
  • H. van Pee
  • M. Pfeiffer
  • F. Pheron
  • A. Roy
  • A. V. Sarantsev
  • S. Schadmand
  • C. Schmidt
  • H. Schmieden
  • B. Schoch
  • S. V. Shende
  • V. Sokhoyan
  • A. Süle
  • V. V. Sumachev
  • T. Szczepanek
  • U. Thoma
  • D. Trnka
  • R. Varma
  • D. Walther
  • C. Wendel
  • D. Werthmüller
  • L. Witthauer
Regular Article - Experimental Physics

Abstract.

Precise data for quasi-free photoproduction of η-mesons off the deuteron have been measured at the Bonn ELSA accelerator with the combined Crystal Barrel/TAPS detector for incident photon energies up to 2.5GeV. The η-mesons have been detected in coincidence with recoil protons and neutrons. Possible nuclear effects like Fermi motion and re-scattering can be studied via a comparison of the quasi-free reaction off the bound proton to η-production off the free proton. No significant effects beyond the folding of the free cross-section with the momentum distribution of the bound protons have been found. These Fermi motion effects can be removed by an analysis using the invariant mass of the η-nucleon pairs reconstructed from the final-state four-momenta of the particles. The total cross-section for quasi-free η-photoproduction off the neutron reveals even without correction for Fermi motion a pronounced bump-like structure around 1GeV of incident photon energy, which is not observed for the proton. This structure is even narrower in the invariant-mass spectrum of the η-neutron pairs. Position and width of the peak in the invariant-mass spectrum are W ≈ 1665 MeV and FWHM Γ ≈ 25 MeV. The data are compared to the results of different models.

References

  1. 1.
    S. Dürr et al., Science 322, 1224 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    J. Bulava et al., Phys. Rev. D 82, 014507 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    T. Burch et al., Phys. Rev. D 74, 014504 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    S. Basak et al., Phys. Rev. D 76, 074504 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    S. Capstick, W. Roberts, Prog. Part. Nucl. Phys. 241, 241 (2000)ADSCrossRefGoogle Scholar
  6. 6.
    E. Klempt, J.M. Richard, Rev. Mod. Phys. 82, 1095 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    M. Anselmino et al., Rev. Mod. Phys. 65, 1199 (1993)ADSCrossRefGoogle Scholar
  8. 8.
    R. Bijker, F. Iachello, A. Leviatan, Ann. Phys. (N.Y.) 236, 69 (1994)ADSCrossRefGoogle Scholar
  9. 9.
    N. Isgur, J. Paton, Phys. Rev. D 31, 2910 (1985)ADSCrossRefGoogle Scholar
  10. 10.
    E.E. Kolomeitsev, M.F.M. Lutz, Phys. Lett. B 585, 243 (2004)ADSCrossRefGoogle Scholar
  11. 11.
    V.D. Burkert, T.-S. Lee, Int. J. Mod. Phys. E 13, 1035 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    B. Krusche, S. Schadmand, Prog. Part. Nucl. Phys. 51, 399 (2003)ADSCrossRefGoogle Scholar
  13. 13.
    R.G. Moorehouse, Phys. Rev. Lett. 16, 772 (1966)ADSCrossRefGoogle Scholar
  14. 14.
    I. Jaegle et al., Phys. Rev. Lett. 100, 252002 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    I. Jaegle et al., Eur. Phys. J. A 47, 11 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    B. Krusche et al., Phys. Rev. Lett. 74, 3736 (1995)ADSCrossRefGoogle Scholar
  17. 17.
    J. Ajaka et al., Phys. Rev. Lett. 81, 1797 (1998)ADSCrossRefGoogle Scholar
  18. 18.
    A. Bock et al., Phys. Rev. Lett. 81, 534 (1998)ADSCrossRefGoogle Scholar
  19. 19.
    C.S. Armstrong et al., Phys. Rev. D 60, 052004 (1999)ADSCrossRefGoogle Scholar
  20. 20.
    R. Thompson et al., Phys. Rev. Lett. 86, 1702 (2001)ADSCrossRefGoogle Scholar
  21. 21.
    F. Renard et al., Phys. Lett. B 528, 215 (2002)ADSCrossRefGoogle Scholar
  22. 22.
    M. Dugger et al., Phys. Rev. Lett. 89, 222002 (2002)ADSCrossRefGoogle Scholar
  23. 23.
    V. Crede et al., Phys. Rev. Lett. 94, 012004 (2005)ADSCrossRefGoogle Scholar
  24. 24.
    T. Nakabayashi et al., Phys. Rev. C 74, 035202 (2006)ADSCrossRefGoogle Scholar
  25. 25.
    O. Bartalini et al., Eur. Phys. J. A 33, 169 (2007)ADSCrossRefGoogle Scholar
  26. 26.
    O. Bartholomy et al., Eur. Phys. J. A 33, 133 (2007)ADSCrossRefGoogle Scholar
  27. 27.
    D. Elsner et al., Eur. Phys. J. A 33, 147 (2007)ADSCrossRefGoogle Scholar
  28. 28.
    H. Denizli et al., Phys. Rev. C 76, 015204 (2007)ADSCrossRefGoogle Scholar
  29. 29.
    V. Crede et al., Phys. Rev. C 80, 055202 (2009)ADSCrossRefGoogle Scholar
  30. 30.
    M. Williams et al., Phys. Rev. C 80, 045213 (2009)ADSCrossRefGoogle Scholar
  31. 31.
    M. Sumihama et al., Phys. Rev. C 80, 052201(R) (2009)ADSCrossRefGoogle Scholar
  32. 32.
    E.F. McNicoll et al., Phys. Rev. C 82, 035208 (2010)ADSCrossRefGoogle Scholar
  33. 33.
    B. Krusche et al., Phys. Lett. B 397, 171 (1997)ADSCrossRefGoogle Scholar
  34. 34.
    A. Fantini et al., Phys. Rev. C 78, 015203 (2008)ADSCrossRefGoogle Scholar
  35. 35.
    W.-T. Chiang et al., Nucl. Phys. A 700, 429 (2002)ADSCrossRefGoogle Scholar
  36. 36.
    K. Nakamura et al., J. Phys. G 37, 075021 (2010)ADSCrossRefGoogle Scholar
  37. 37.
    V.A. Anisovich et al., Eur. Phys. J. A 25, 427 (2005)ADSCrossRefGoogle Scholar
  38. 38.
    B. Krusche et al., Phys. Lett. B 358, 40 (1995)ADSCrossRefGoogle Scholar
  39. 39.
    P. Hoffmann-Rothe et al., Phys. Rev. Lett. 78, 4697 (1997)ADSCrossRefGoogle Scholar
  40. 40.
    V. Hejny et al., Eur. Phys. J. A 6, 83 (1999)ADSGoogle Scholar
  41. 41.
    J. Weiss et al., Eur. Phys. J. A 16, 275 (2003)ADSCrossRefGoogle Scholar
  42. 42.
    J. Weiss et al., Eur. Phys. J. A 11, 371 (2001)ADSCrossRefGoogle Scholar
  43. 43.
    M. Pfeiffer et al., Phys. Rev. Lett. 92, 252001 (2004)ADSCrossRefGoogle Scholar
  44. 44.
    N. Kaiser, P.B. Siegel, W. Weise, Phys. Lett. B 362, 23 (1995)ADSCrossRefGoogle Scholar
  45. 45.
    N. Kaiser, T. Waas, W. Weise, Nucl. Phys. A 612, 297 (1997)ADSCrossRefGoogle Scholar
  46. 46.
    M. Polyakov, A. Rathke, Eur. Phys. J. A 18, 691 (2003)ADSCrossRefGoogle Scholar
  47. 47.
    R.A. Arndt et al., Phys. Rev. C 69, 035208 (2004)ADSCrossRefGoogle Scholar
  48. 48.
    H.-C. Kim et al., Phys. Rev. D 71, 094023 (2005)ADSCrossRefGoogle Scholar
  49. 49.
    V. Kuznetsov et al., Phys. Lett. B 647, 23 (2007)ADSCrossRefGoogle Scholar
  50. 50.
    F. Miyahara et al., Prog. Theor. Phys. Suppl. 168, 90 (2007)ADSCrossRefGoogle Scholar
  51. 51.
    V. Shklyar, H. Lenske, U. Mosel, Phys. Lett. B 650, 172 (2007)ADSCrossRefGoogle Scholar
  52. 52.
    R. Shyam, O. Scholten, Phys. Rev. C 78, 065201 (2008)ADSCrossRefGoogle Scholar
  53. 53.
    M. Döring, K. Nakayama, Phys. Lett. B 683, 145 (2010)ADSCrossRefGoogle Scholar
  54. 54.
    A. Fix, L. Tiator, M.V. Polyakov, Eur. Phys. J. A 32, 311 (2007)ADSCrossRefGoogle Scholar
  55. 55.
    V.A. Anisovich et al., Eur. Phys. J. A 41, 13 (2009)ADSCrossRefGoogle Scholar
  56. 56.
    V. Kuznetsov et al., Phys. Rev. C 83, 022201(R) (2011)ADSCrossRefGoogle Scholar
  57. 57.
    D. Husman, W.J. Schwille, Phys. Bl. 44, 40 (1988)Google Scholar
  58. 58.
    W. Hillert, Eur. Phys. J. A 28, 139 (2006)ADSCrossRefGoogle Scholar
  59. 59.
    D. Elsner et al., Eur. Phys. J. A 39, 373 (2009)ADSCrossRefGoogle Scholar
  60. 60.
    E. Aker et al., Nucl. Instrum. Methods A 321, 69 (1992)ADSCrossRefGoogle Scholar
  61. 61.
    R. Novotny, IEEE Trans. Nucl. Sci. 38, 379 (1991)ADSCrossRefGoogle Scholar
  62. 62.
    A.R. Gabler et al., Nucl. Instrum. Methods A 346, 168 (1994)ADSCrossRefGoogle Scholar
  63. 63.
    G. Suft et al., Nucl. Instrum. Methods A 538, 416 (2005)ADSCrossRefGoogle Scholar
  64. 64.
    H. van Pee et al., Eur. Phys. J. A 31, 61 (2007)ADSCrossRefGoogle Scholar
  65. 65.
    I. Jaegle, PhD thesis, University of Basel (2007) (http://jazz.physik.unibas.ch/site/theses.html)
  66. 66.
    R. Brun, GEANT, Cern/DD/ee/84-1 (1986)Google Scholar
  67. 67.
    T. Mertens et al., Eur. Phys. J. A 38, 195 (2008)MathSciNetADSCrossRefGoogle Scholar
  68. 68.
    C. Zeitnitz, The GEANT-CALOR interface user’s guide (2001). (http://www.staff.uni-mainz.de/zeitnitz/Gcalor/gcalor.html)
  69. 69.
    E. Schäfer, PhD thesis, University of Mainz, unpublished (1993)Google Scholar
  70. 70.
    M. Lacombe et al., Phys. Lett. B 101, 139 (1981)ADSCrossRefGoogle Scholar
  71. 71.
    D. Elsner, Int. J. Mod. Phys. E 19, 869 (2010)ADSCrossRefGoogle Scholar
  72. 72.
    W.T. Chiang et al., Phys. Rev. C 68, 045202 (2003)ADSCrossRefGoogle Scholar
  73. 73.
    K.H. Althoff et al., Z. Phys. C 1, 327 (1979)ADSCrossRefGoogle Scholar
  74. 74.
    A.M. Bernstein et al., Phys. Rev. C 55, 1509 (1997)ADSCrossRefGoogle Scholar
  75. 75.
    A.B. Gridnev, N.G. Kozlenko, Eur. Phys. J. A 4, 187 (1999)ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • The CBELSA/TAPS Collaboration
  • I. Jaegle
    • 1
  • B. Krusche
    • 1
  • A. V. Anisovich
    • 2
    • 3
  • J. C. S. Bacelar
    • 4
  • B. Bantes
    • 5
  • O. Bartholomy
    • 2
  • D. E. Bayadilov
    • 2
    • 3
  • R. Beck
    • 2
  • Y. A. Beloglazov
    • 3
  • R. Castelijns
    • 4
  • V. Crede
    • 6
  • M. Dieterle
    • 1
  • H. Dutz
    • 5
  • D. Elsner
    • 5
  • R. Ewald
    • 5
  • F. Frommberger
    • 5
  • C. Funke
    • 2
  • R. Gothe
    • 5
    • 8
  • R. Gregor
    • 7
  • A. B. Gridnev
    • 3
  • E. Gutz
    • 2
  • W. Hillert
    • 5
  • S. Höffgen
    • 5
  • P. Hoffmeister
    • 2
  • I. Horn
    • 2
  • J. Junkersfeld
    • 2
  • H. Kalinowsky
    • 2
  • S. Kammer
    • 5
  • I. Keshelashvili
    • 1
  • V. Kleber
    • 5
  • Frank Klein
    • 5
  • Friedrich Klein
    • 5
  • E. Klempt
    • 2
  • M. Konrad
    • 5
  • M. Kotulla
    • 1
  • M. Lang
    • 2
  • H. Löhner
    • 4
  • I. V. Lopatin
    • 3
  • S. Lugert
    • 7
  • Y. Maghrbi
    • 1
  • D. Menze
    • 5
  • T. Mertens
    • 1
  • J. G. Messchendorp
    • 4
  • V. Metag
    • 7
  • V. A. Nikonov
    • 2
    • 3
  • M. Nanova
    • 7
  • D. V. Novinski
    • 2
    • 3
  • R. Novotny
    • 7
  • M. Oberle
    • 1
  • M. Ostrick
    • 5
    • 9
  • L. M. Pant
    • 7
    • 10
  • H. van Pee
    • 2
    • 7
  • M. Pfeiffer
    • 7
  • F. Pheron
    • 1
  • A. Roy
    • 7
    • 11
  • A. V. Sarantsev
    • 2
    • 3
  • S. Schadmand
    • 7
    • 13
  • C. Schmidt
    • 2
  • H. Schmieden
    • 5
  • B. Schoch
    • 5
  • S. V. Shende
    • 4
    • 12
  • V. Sokhoyan
    • 2
  • A. Süle
    • 5
  • V. V. Sumachev
    • 3
  • T. Szczepanek
    • 2
  • U. Thoma
    • 2
    • 7
  • D. Trnka
    • 7
  • R. Varma
    • 7
    • 11
  • D. Walther
    • 5
  • C. Wendel
    • 2
  • D. Werthmüller
    • 1
  • L. Witthauer
    • 1
  1. 1.Departement PhysikUniversität BaselBaselSwitzerland
  2. 2.Helmholtz-Institut für Strahlen- und Kernphysik der Universität BonnBonnGermany
  3. 3.Petersburg Nuclear Physics InstituteGatchinaRussia
  4. 4.KVIUniversity of GroningenGroningenThe Netherlands
  5. 5.Physikalisches Institut der Universität BonnBonnGermany
  6. 6.Department of PhysicsFlorida State UniversityFloridaUSA
  7. 7.II. Physikalisches InstitutUniversität GiessenGiessenGermany
  8. 8.University of South CarolinaSouth CarolinaUSA
  9. 9.University of MainzMainzGermany
  10. 10.Nucl. Phys. DivisionBARCMumbaiIndia
  11. 11.Department of PhysicsIndian Institute of TechnologyMumbaiIndia
  12. 12.Department of PhysicsUniversity of PunePuneIndia
  13. 13.Institut für KernphysikForschungszentrum JülichJülichGermany

Personalised recommendations