Advertisement

Pionic deuterium

  • Th. Strauch
  • F. D. Amaro
  • D. F. Anagnostopoulos
  • P. Bühler
  • D. S. Covita
  • H. Gorke
  • D. GottaEmail author
  • A. Gruber
  • A. Hirtl
  • P. Indelicato
  • E. -O. Le Bigot
  • M. Nekipelov
  • J. M. F. dos Santos
  • Ph. Schmid
  • S. Schlesser
  • L. M. Simons
  • M. Trassinelli
  • J. F. C. A. Veloso
  • J. Zmeskal
Regular Article - Experimental Physics

Abstract

The strong-interaction shift ε 1s πD and broadening Γ 1s πD in pionic deuterium have been determined in a high statistics study of the πD(3p-1s) X-ray transition using a high-resolution crystal spectrometer. The pionic deuterium shift will provide constraints for the pion-nucleon isospin scattering lengths extracted from measurements of shift and broadening in pionic hydrogen. The hadronic broadening is related to pion absorption and production at threshold. The results are ε 1s πD = (−2356 ± 31) meV (repulsive) and Γ 1s πD meV yielding for the complex πD scattering length a πD = [−(24.99±0.33)+i(6.22 −0.26 +0.12 )] × 10−3 m π −1 . From the imaginary part, the threshold parameter for pion production is obtained to be α = (251 −11 +5 ) μb. This allows, in addition, and by using results from pion absorption in 3He at threshold, the determination of the effective couplings g 0 and g 1 for s-wave pion absorption on isoscalar and isovector NN pairs.

Keywords

Pion Production Leading Order Muonic Hydrogen Pion Beam Natural Line Width 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    S. Deser, M.L. Goldberger, K. Baumann, W. Thirring, Phys. Rev. 96, 774 (1954).ADSCrossRefGoogle Scholar
  2. 2.
    D. Gotta, Prog. Part. Nucl. Phys. 52, 133 (2004).ADSCrossRefGoogle Scholar
  3. 3.
    T.E.O. Ericson, W. Weise, Pions and Nuclei (Clarendon, Oxford, 1988) chapt. 6Google Scholar
  4. 4.
    K.A. Brückner, Phys. Rev. 98, 769 (1955).ADSCrossRefGoogle Scholar
  5. 5.
    J. Gasser, V.E. Lyubovitskij, A. Rusetsky, Phys. Rep. 456, 167 (2008).ADSCrossRefGoogle Scholar
  6. 6.
    M. Lüscher, Commun. Math. Phys. 105, 153 (1986).ADSCrossRefGoogle Scholar
  7. 7.
    M. Lüscher, Nucl. Phys. B 354, 531 (1991).ADSCrossRefGoogle Scholar
  8. 8.
    A. Torok et al., Phys. Rev. D 81, 074506 (2010).ADSCrossRefGoogle Scholar
  9. 9.
    S.R. Beane, W. Detmold, K. Originos, M.J. Savage, Prog. Part. Nucl. Phys. 66, 1 (2011).ADSCrossRefGoogle Scholar
  10. 10.
    S. Weinberg, Phys. Rev. Lett. 17, 616 (1966).ADSCrossRefGoogle Scholar
  11. 11.
    Y. Tomozawa, Nuovo Cimento A 46, 707 (1966).ADSCrossRefGoogle Scholar
  12. 12.
    J. Gasser, H. Leutwyler, Phys. Rep. 87, 77 (1982).ADSCrossRefGoogle Scholar
  13. 13.
    A.W. Thomas, W. Weise, The Structure of the Nucleon (WILEY--VCH, Berlin, 2001) chapt. 7Google Scholar
  14. 14.
    S. Weinberg, Physica A 96, 327 (1979).ADSCrossRefGoogle Scholar
  15. 15.
    J. Gasser, H. Leutwyler, Ann. Phys. 158, 142 (1984).MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    J. Gasser, H. Leutwyler, Nucl. Phys. B 250, 465 (1985).ADSCrossRefGoogle Scholar
  17. 17.
    G. Ecker, Prog. Part. Nucl. Phys. 35, 1 (1995).ADSCrossRefGoogle Scholar
  18. 18.
    V. Bernard, N. Kaiser, Ulf-G. Meißner, Int. J. Mod. Phys. E 4, 193 (1995).ADSCrossRefGoogle Scholar
  19. 19.
    S. Scherer, Adv. Nucl. Phys. 27, 277 (2003) (arXiv:hep-ph/0210398v1).CrossRefGoogle Scholar
  20. 20.
    V. Bernard, Prog. Part. Nucl. Phys. 60, 82 (2008).ADSCrossRefGoogle Scholar
  21. 21.
    T. Becher, H. Leutwyler, J. High En. Phys. 06, 017 (2001).ADSCrossRefGoogle Scholar
  22. 22.
    J. Gasser, H. Leutwyler, M.E. Sainio, Phys. Lett. B 253, 252 (1991).ADSCrossRefGoogle Scholar
  23. 23.
    M.E. Sainio, PiN Newslett. 16, 138 (2002).Google Scholar
  24. 24.
    M.L. Goldberger, H. Miyazawa, R. Oehme, Phys. Rev. 99, 986 (1955).ADSzbMATHCrossRefGoogle Scholar
  25. 25.
    T.E.O. Ericson, B. Loiseau, A.W. Thomas, Phys. Rev. C 66, 014005 (2002).ADSCrossRefGoogle Scholar
  26. 26.
    V.V. Abaev, P. Metsä, M.E. Sainio, Eur. Phys. J. A 32, 321 (2007).ADSCrossRefGoogle Scholar
  27. 27.
    V. Bernard, N. Kaiser, Ulf-G. Meißner, Phys. Lett. B 383, 116 (1996).ADSCrossRefGoogle Scholar
  28. 28.
    M.A. Kovash et al., PiN Newslett. 12, 51 (1997).Google Scholar
  29. 29.
    O. Hanstein, D. Drechsel, L. Tiator, PiN Newslett. 12, 56 (1997).Google Scholar
  30. 30.
    D.F. Measday, Phys. Rep. 354, 243 (2001).ADSCrossRefGoogle Scholar
  31. 31.
    T. Gorringe, H.W. Fearing, Rev. Mod. Phys. 76, 31 (2004).ADSCrossRefGoogle Scholar
  32. 32.
    V.A. Andreev et al., Phys. Rev. Lett. 99, 032002 (2007).ADSCrossRefGoogle Scholar
  33. 33.
    D. Sigg et al., Nucl. Phys. A 609, 310 (1996).ADSCrossRefGoogle Scholar
  34. 34.
    V.E. Lyubovitskij, A. Rusetsky, Phys. Lett. B 494, 9 (2000).ADSCrossRefGoogle Scholar
  35. 35.
    J. Gasser et al., Eur. Phys. J. C 26, 13 (2002).ADSCrossRefGoogle Scholar
  36. 36.
    P. Zemp, Proceedings of Chiral Dynamics, September 8--13 2003 (Bonn, Germany, 2003) p. 128, arXiv:hep-ph/0311212v1
  37. 37.
    G. Rasche, W.S. Woolcock, Nucl. Phys. A 381, 405 (1982).ADSCrossRefGoogle Scholar
  38. 38.
    J. Spuller et al., Phys. Lett. B 67, 479 (1977).ADSCrossRefGoogle Scholar
  39. 39.
    G.C. Oades, G. Rasche, W.S. Woolcock, E. Matsinos, A. Gashi, Nucl. Phys. A 794, 73 (2007).ADSCrossRefGoogle Scholar
  40. 40.
    T.E.O. Ericson, W. Weise, Pions and Nuclei (Clarendon, Oxford, 1988) chapt. 9Google Scholar
  41. 41.
    T.E.O. Ericson, W. Weise, Pions and Nuclei (Clarendon, Oxford, 1988) chapt. 4Google Scholar
  42. 42.
    A.W. Thomas, R.H. Landau, Phys. Rep. B 58, 121 (1980).ADSCrossRefGoogle Scholar
  43. 43.
    A. Deloff, Fundamentals in Hadronic Atom Theory (World Scientific, London, 2003) chapt. 15Google Scholar
  44. 44.
    D. Sigg et al., Nucl. Phys. A 609, 269 (1996).ADSCrossRefGoogle Scholar
  45. 45.
    D. Chatellard et al., Phys. Rev. Lett. 74, 4157 (1995).ADSCrossRefGoogle Scholar
  46. 46.
    D. Chatellard et al., Nucl. Phys. A 625, 855 (1997).ADSCrossRefGoogle Scholar
  47. 47.
    P. Hauser et al., Phys. Rev. C 58, R1869 (1998).ADSCrossRefGoogle Scholar
  48. 48.
    H.-Ch. Schröder et al., Eur. Phys. J. C 21, 473 (2001).ADSCrossRefGoogle Scholar
  49. 49.
    S. Weinberg, Phys. Lett. B 295, 114 (1992).ADSCrossRefGoogle Scholar
  50. 50.
    V. Baru, A.E. Kudryavtsev, Phys. At. Nucl. 60, 1475 (1997).Google Scholar
  51. 51.
    S.R. Beane, V. Bernard, T.-S. Lee, U.-G. Meißner, Phys. Rev. C 57, 424 (1998).ADSCrossRefGoogle Scholar
  52. 52.
    V.E. Tarasov, V.V. Baru, A.E. Kudryavtsev, Phys. At. Nucl. 63, 801 (2000).CrossRefGoogle Scholar
  53. 53.
    A. Deloff, Phys. Rev. C 64, 065205 (2001).ADSCrossRefGoogle Scholar
  54. 54.
    N. Kaiser, Phys. Rev. C 65, 057001 (2002).ADSCrossRefGoogle Scholar
  55. 55.
    B. Burasoy, H.W. Grieshammer, Int. J. Mod. Phys. E 12, 65 (2003).ADSCrossRefGoogle Scholar
  56. 56.
    S.R. Beane, V. Bernard, E. Epelbaum, U.-G. Meißner, D.R. Phillips, Nucl. Phys. A 720, 399 (2003).ADSCrossRefGoogle Scholar
  57. 57.
    M. Döring, E. Oset, M.J. Vicente Vacas, Phys. Rev. C 70, 045203 (2004).ADSCrossRefGoogle Scholar
  58. 58.
    B.F. Irgaziev, B.A. Fayzullaev, arXiv:hep-ph/0404203v1 (2004).
  59. 59.
    U.-G. Meißner, U. Raha, A. Rusetsky, Eur. Phys. J. C 41, 213 (2005).ADSCrossRefGoogle Scholar
  60. 60.
    U.-G. Meißner, U. Raha, A. Rusetsky, Eur. Phys. J. C 45, 545 (2006).ADSCrossRefGoogle Scholar
  61. 61.
    U.-G. Meißner, U. Raha, A. Rusetsky, Phys. Lett. B 639, 478 (2006).ADSCrossRefGoogle Scholar
  62. 62.
    M. Hoferichter, B. Kubis, U.-G. Meißner, Phys. Lett. B 678, 65 (2009).ADSCrossRefGoogle Scholar
  63. 63.
    M. Hoferichter, B. Kubis, U.-G. Meißner, Nucl. Phys. A 833, 18 (2010).ADSCrossRefGoogle Scholar
  64. 64.
    V. Baru et al., Phys. Lett. B 694, 473 (2011) (arXiv:nucl-th/1003.4444v2).ADSCrossRefGoogle Scholar
  65. 65.
    M. Hoferichter, B. Kubis, U.-G. Meißner, PoS CD09, 014 (2009) (arXiv:hep-ph/0910.0736).Google Scholar
  66. 66.
    J. Hüfner, Phys. Rep. 21, 1 (1975).ADSCrossRefGoogle Scholar
  67. 67.
    V. Lensky et al., Eur. Phys. J. A 27, 37 (2006).ADSCrossRefGoogle Scholar
  68. 68.
    V. Lensky et al., Phys. Lett. B 648, 46 (2007).ADSCrossRefGoogle Scholar
  69. 69.
    V.L. Highland et al., Nucl. Phys. A 365, 333 (1981).ADSCrossRefGoogle Scholar
  70. 70.
    D.W. Joseph, Phys. Rev. 119, 805 (1960).ADSCrossRefGoogle Scholar
  71. 71.
    R. MacDonald et al., Phys. Rev. Lett. 38, 746 (1977).ADSCrossRefGoogle Scholar
  72. 72.
    PSI proposal R-98-01, www2.fz-juelich.de/ikp/exotic-atomsGoogle Scholar
  73. 73.
    D. Gotta et al., Lect. Notes Phys. 745, 165 (2008).ADSCrossRefGoogle Scholar
  74. 74.
    Th. Strauch et al., Phys. Rev. Lett. 104, 142503 (2010).ADSCrossRefGoogle Scholar
  75. 75.
    F.J. Hartmann, Proceedings of Physics of Exotic Atoms on Electromagnetic Cascade and Chemistry, Erice, Italy, 1989 (Plenum Press, New York, 1990) p. 23 and p. 127, and references thereinGoogle Scholar
  76. 76.
    J.S. Cohen, Rep. Prog. Phys. 67, 1769 (2004).ADSCrossRefGoogle Scholar
  77. 77.
    E. Borie, M. Leon, Phys. Rev. A 21, 1460 (1980).ADSCrossRefGoogle Scholar
  78. 78.
    M. Leon, H.A. Bethe, Phys. Rev. 127, 636 (1962).ADSCrossRefGoogle Scholar
  79. 79.
    R. al Hassani et al., Z. Phys. A 351, 113 (1995).ADSCrossRefGoogle Scholar
  80. 80.
    T.S. Jensen, V.E. Markushin, Eur. Phys. J. D 19, 165 (2002).ADSGoogle Scholar
  81. 81.
    T.S. Jensen, V.E. Markushin, Eur. Phys. J. D 21, 261 (2002).ADSCrossRefGoogle Scholar
  82. 82.
    T.S. Jensen, V.E. Markushin, Eur. Phys. J. D 21, 271 (2002).ADSCrossRefGoogle Scholar
  83. 83.
    L. Bracci, G. Fiorentini, Nuovo Cimento A 43, 9 (1978).ADSCrossRefGoogle Scholar
  84. 84.
    R. Pohl et al., Phys. Rev. Lett. 97, 193402 (2006).ADSCrossRefGoogle Scholar
  85. 85.
    J.B. Czirr et al., Phys. Rev. 130, 341 (1963).ADSCrossRefGoogle Scholar
  86. 86.
    A. Badertscher et al., Europhys. Lett. 54, 313 (2001) and references thereinADSCrossRefGoogle Scholar
  87. 87.
    D.S. Covita et al., Phys. Rev. Lett. 102, 023401 (2009).ADSCrossRefGoogle Scholar
  88. 88.
    M. Hennebach, Precision measurement of ground state transitions in pionic hydrogen, Ph. D. thesis, Universität zu Köln (2003), http://kups.ub.uni-koeln.de/744/
  89. 89.
    V.N. Pomerantsev, V.P. Popov, Phys. Rev. A 73, 040501 (2006).ADSCrossRefGoogle Scholar
  90. 90.
    T.S. Jensen, V.N. Pomerantsev, V.P. Popov, arXiv:nucl-th/0712.3010v1 (2007).Google Scholar
  91. 91.
    V.P. Popov, V.N. Pomerantsev, arXiv:nucl-th/0712.3111v1 (2007).Google Scholar
  92. 92.
    D. Taqqu, AIP Conf. Proc. 181, 217 (1989).ADSCrossRefGoogle Scholar
  93. 93.
    S. Jonsell, J. Wallenius, P. Froelich, Phys. Rev. A 59, 3440 (1999).ADSCrossRefGoogle Scholar
  94. 94.
    R. Pohl, Hyperfine Interact. 193, 115 (2009).ADSCrossRefGoogle Scholar
  95. 95.
    E. Lindroth, J. Wallenius, S. Jonsell, Phys. Rev. A 68, 032502 (2003).ADSCrossRefGoogle Scholar
  96. 96.
    S. Kilic, J.-P. Karr, L. Hilico, Phys. Rev. A 70, 042506 (2004).ADSCrossRefGoogle Scholar
  97. 97.
    T.L. Trueman, Nucl. Phys. 26, 57 (1961).CrossRefGoogle Scholar
  98. 98.
    E. Lambert, Helv. Phys. Acta 42, 667 (1969).Google Scholar
  99. 99.
    E. Lambert, Helv. Phys. Acta 43, 713 (1970).Google Scholar
  100. 100.
    J. Mitroy, I.A. Ivallov, J. Phys. G 27, 1421 (2001).ADSCrossRefGoogle Scholar
  101. 101.
    D. Eiras, J. Soto, Phys. Lett. B 491, 101 (2000).ADSCrossRefGoogle Scholar
  102. 102.
    A.H. Rosenfeld, Phys. Rev. 96, 139 (1954).ADSCrossRefGoogle Scholar
  103. 103.
    A. Reitan, Nucl. Phys. B 11, 170 (1969).ADSCrossRefGoogle Scholar
  104. 104.
    H. Machner, J. Niskanen, Nucl. Phys. A 776, 172 (2006).ADSCrossRefGoogle Scholar
  105. 105.
    K. Brückner, R. Serber, K. Watson, Phys. Rev. 81, 575 (1951).ADSzbMATHCrossRefGoogle Scholar
  106. 106.
    V. Baru, C. Hanhart, A. Rusetski, private communicationGoogle Scholar
  107. 107.
    A. Filin et al., Phys. Lett. B 681, 423 (2009).ADSCrossRefGoogle Scholar
  108. 108.
    E. Byckling, K. Kajantie, Particle Kinematics (John Wiley and Sons, London, 1973) chapt. IIGoogle Scholar
  109. 109.
    L.M. Simons, Physica Scripta T22, 90 (1988).ADSCrossRefGoogle Scholar
  110. 110.
    L.M. Simons, Hyperfine Interact. 81, 253 (1993).ADSCrossRefGoogle Scholar
  111. 111.
    D.S. Covita et al., Rev. Sci. Instrum. 79, 033102 (2008).ADSCrossRefGoogle Scholar
  112. 112.
    J. Eggs, K. Ulmer, Z. Angew. Phys. 20, 118 (1965).Google Scholar
  113. 113.
    G. Zschornack, Nucl. Instrum. Methods 200, 481 (1982).CrossRefGoogle Scholar
  114. 114.
    N. Nelms et al., Nucl. Instrum. Methods A 484, 419 (2002).ADSCrossRefGoogle Scholar
  115. 115.
    G. Basile et al., Phys. Rev. Lett. 72, 3133 (1994).ADSCrossRefGoogle Scholar
  116. 116.
    R. Deslattes et al., Rev. Mod. Phys. 75, 35 (2003).ADSCrossRefGoogle Scholar
  117. 117.
    P. Indelicato et al., Rev. Sci. Instrum. 77, 043107 (2006).ADSCrossRefGoogle Scholar
  118. 118.
    D.F. Anagnostopulos et al., Nucl. Instrum. Methods A 545, 217 (2005).ADSCrossRefGoogle Scholar
  119. 119.
    M. Trassinelli et al., J. Phys.: Conf. Ser. 58, 129 (2007).ADSCrossRefGoogle Scholar
  120. 120.
    D.S. Covita, High-precision spectroscopy of the 3p-1s transition in muonic hydrogen, Ph. D. thesis, University of Coimbra (2008), http://hdl.handle.net/10316/7521
  121. 121.
    M. Sanchez del Rio, R.J. Dejus, Proc. SPIE Int. Soc. Opt. Eng. 3448, 246 (1998).ADSGoogle Scholar
  122. 122.
    M. Sanchez del Rio, R.J. Dejus, Proc. SPIE Int. Soc. Opt. Eng. 5536, 171 (2004).ADSGoogle Scholar
  123. 123.
    Th. Strauch, High-precision measurement of strong-interaction effects in pionic deuterium, Ph. D. thesis, Universität zu Köln (2009), http://kups.ub.uni-koeln de/2813/
  124. 124.
    WM.J. Veigele, At. Data Tables 5, 51 (1973).ADSCrossRefGoogle Scholar
  125. 125.
    M.O. Krause, J.H. Oliver, J. Phys. Chem. Ref. Data 8, 329 (1979).ADSCrossRefGoogle Scholar
  126. 126.
    T. Mooney, Argonne National Laboratory, private communicatin (2007).Google Scholar
  127. 127.
    B.L. Henke, E.M. Gullikson, J.C. Davies, At. Data Nucl. Data Tables 54, 181 (1993).ADSCrossRefGoogle Scholar
  128. 128.
    C.T. Chantler, J. Phys. Chem. Ref. Data 24, 71 (1995).ADSCrossRefGoogle Scholar
  129. 129.
    F.N. Chukhovskii, G. Hölzer, O. Wehrhan, E. Förster, J. Appl. Cryst. 29, 438 (1998).CrossRefGoogle Scholar
  130. 130.
    F. Cembali et al., J. Appl. Cryst. 24, 424 (1992).CrossRefGoogle Scholar
  131. 131.
    F. James, M. Roos, Comput. Phys. Commun. 10, 343 (1975).ADSCrossRefGoogle Scholar
  132. 132.
    U.C. Bergmann, K. Riisager, Nucl. Instrum. Methods A 489, 444 (2002).ADSCrossRefGoogle Scholar
  133. 133.
    Particle Data Group (C. Amsler et al.), Phys. Lett. B 667, 1 (2008).ADSCrossRefGoogle Scholar
  134. 134.
    R. Pohl et al., Nature 466, 213 (2010).ADSCrossRefGoogle Scholar
  135. 135.
    C.G. Parthey et al., Phys. Rev. Lett. 104, 233001 (2010).ADSCrossRefGoogle Scholar
  136. 136.
    Y. Lu, R. Rosenfelder, Phys. Lett. B 319, 7 (1993).ADSCrossRefGoogle Scholar
  137. 137.
    W. Leidemann, R. Rosenfelder, Phys. Rev. B 51, 427 (1995).ADSGoogle Scholar
  138. 138.
    J. Ahrens et al., Eur. Phys. J. A 23, 113 (2005).ADSCrossRefGoogle Scholar
  139. 139.
    R. Koch, Nucl. Phys. A 448, 707 (1986).ADSCrossRefGoogle Scholar
  140. 140.
    J. Bailey et al., Phys. Lett. B 50, 403 (1974).ADSCrossRefGoogle Scholar
  141. 141.
    E. Bovet et al., Nucl. Instrum. Methods 190, 613 (1981).ADSCrossRefGoogle Scholar
  142. 142.
    E. Bovet et al., Phys. Lett. B 153, 231 (1985).ADSCrossRefGoogle Scholar
  143. 143.
    C. Hanhart, private communication (2010).Google Scholar
  144. 144.
    F.S. Crawford, M.L. Stevenson, Phys. Rev. 97, 1305 (1955).ADSCrossRefGoogle Scholar
  145. 145.
    C.M. Rose, Phys. Rev. 154, 1305 (1967).ADSCrossRefGoogle Scholar
  146. 146.
    C. Richard-Serre et al., Nucl. Phys. B 20, 413 (1970).ADSCrossRefGoogle Scholar
  147. 147.
    D. Aebischer et al., Nucl. Phys. B 108, 214 (1976).ADSCrossRefGoogle Scholar
  148. 148.
    D.A. Hutcheon et al., Phys. Rev. Lett. 64, 176 (1990).ADSCrossRefGoogle Scholar
  149. 149.
    D.A. Hutcheon et al., Nucl. Rev. A 535, 618 (1991).ADSCrossRefGoogle Scholar
  150. 150.
    B.G. Ritchie et al., Phys. Rev. Lett. 66, 568 (1991).ADSCrossRefGoogle Scholar
  151. 151.
    P. Heimberg et al., Phys. Rev. Lett. 77, 1012 (1996).ADSCrossRefGoogle Scholar
  152. 152.
    M. Drochner et al., Nucl. Phys. A 643, 55 (1998).ADSCrossRefGoogle Scholar
  153. 153.
    D.S. Koltun, A. Reitan, Phys. Rev. 141, 1413 (1966).ADSCrossRefGoogle Scholar
  154. 154.
    I.R. Afnan, A.W. Thomas, Phys. Rev. C 10, 109 (1974).ADSCrossRefGoogle Scholar
  155. 155.
    C. Fayard, G.H. Lamot, T. Mizutani, Phys. Rev. Lett. 45, 524 (1980).ADSCrossRefGoogle Scholar
  156. 156.
    C.J. Horowitz, Phys. Rev. C 48, 2920 (1993).MathSciNetADSCrossRefGoogle Scholar
  157. 157.
    J.A. Niskanen, Phys. Rev. C 53, 526 (1996).ADSCrossRefGoogle Scholar
  158. 158.
    A.N. Ivanov et al., Z. Phys. A 358, 81 (1997).ADSCrossRefGoogle Scholar
  159. 159.
    S.G. Eckstein, Phys. Rev. 129, 413 (1963).ADSCrossRefGoogle Scholar
  160. 160.
    J.-F. Germond, C. Wilkin, J. Phys. G 14, 181 (1988).ADSCrossRefGoogle Scholar
  161. 161.
    D. Gotta et al., Phys. Rev. C 51, 469 (1995).ADSCrossRefGoogle Scholar
  162. 162.
    E. Daum et al., Nucl. Phys. A 589, 553 (1995).ADSCrossRefGoogle Scholar
  163. 163.
    J. Roginsky, C. Werntz, Phys. Rev. C 40, 2732 (1989).ADSCrossRefGoogle Scholar
  164. 164.
    D.G. Long, M. Sternheim, R.R. Silbar, Phys. Rev C 26, 586 (1982).ADSCrossRefGoogle Scholar
  165. 165.
    G.A. Miller, P. Sauer, Phys. Rev. C 44, R1725 (1991).ADSCrossRefGoogle Scholar
  166. 166.
    H.O. Meyer et al., Nucl. Phys. A 539, 633 (1992).ADSCrossRefGoogle Scholar
  167. 167.
    C. Hanhart, Phys. Rep. 397, 155 (2004).ADSCrossRefGoogle Scholar
  168. 168.
    V. Baru et al., Phys. Rev. C 80, 044003 (2009).ADSCrossRefGoogle Scholar
  169. 169.
    C. Hanhart, N. Kaiser, Phys. Rev. C 66, 054005 (2002).ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Th. Strauch
    • 1
  • F. D. Amaro
    • 2
  • D. F. Anagnostopoulos
    • 3
  • P. Bühler
    • 4
  • D. S. Covita
    • 2
    • 7
  • H. Gorke
    • 5
  • D. Gotta
    • 1
    Email author
  • A. Gruber
    • 4
  • A. Hirtl
    • 4
  • P. Indelicato
    • 6
  • E. -O. Le Bigot
    • 6
  • M. Nekipelov
    • 1
  • J. M. F. dos Santos
    • 2
  • Ph. Schmid
    • 4
  • S. Schlesser
    • 6
  • L. M. Simons
    • 7
  • M. Trassinelli
    • 6
  • J. F. C. A. Veloso
    • 8
  • J. Zmeskal
    • 4
  1. 1.Institut für KernphysikForschungszentrum JülichJülichGermany
  2. 2.Department of PhysicsCoimbra UniversityCoimbraPortugal
  3. 3.Department of Materials Science and EngineeringUniversity of IoanninaIoanninaGreece
  4. 4.Stefan Meyer Institut for Subatomic PhysicsAustrian Academy of SciencesViennaAustria
  5. 5.Zentralinstitut für ElektronikForschungszentrum Jülich GmbHJülichGermany
  6. 6.Laboratoire Kastler BrosselUPMC-Paris 6, ENS, CNRSParisFrance
  7. 7.Laboratory for Particle PhysicsPaul Scherrer InstitutVilligenSwitzerland
  8. 8.I3N, Department of PhysicsAveiro UniversityAveiroPortugal

Personalised recommendations