A study of reaction rates of (n, f ) , (n,\( \gamma\)) and (n, 2n) reactions in natU and 232Th by the neutron fluence produced in the graphite set-up (GAMMA-3) irradiated by 2.33 GeV deuteron beam

  • J. Adam
  • Chitra Bhatia
  • K. Katovsky
  • V. KumarEmail author
  • M. Majerle
  • V. S. Pronskikh
  • A. M. Khilmanovich
  • B. A. Martsynkevich
  • I. V. Zhuk
  • V. M. Golovatiouk
  • W. Westmeier
  • A. A. Solnyshkin
  • V. M. Tsoupko-Sitnikov
  • A. S. Potapenko
Regular Article - Experimental Physics


Spallation neutrons produced in the collision of a 2.33GeV deuteron beam with a large lead target are moderated by a thick graphite block surrounding the target and used to activate the radioactive samples of natU and Th put at three different positions, identified as holes “a”, “b” and “c” in the graphite block. Rates of the (n, f), (n, \( \gamma\) and (n, 2n) reactions in the two samples are determined using the gamma spectrometry. The ratios of the experimental reaction rates, R (n, 2n)/R (n, f), for 232Th and natU are estimated in order to understand the role of the (n, x n) kind of reactions in Accelerator-Driven Sub-critical Systems. For the Th-sample, the ratio is ∼ 54 (10)% in the case of hole “a” and ∼ 95 (57)% in the case of hole “b” compared to 1.73(20)% for hole “a” and 0.710(9)% for hole “b” in the case of the natU sample. Also the ratio of fission rates in uranium to thorium, natU (n, f)/ 232Th (n, f), is ∼ 11.2 (17) in the case of hole “a” and 26.8(85) in hole “b”. Similarly, the ratio 238U (n, 2n)/ 232Th (n, 2n) is 0.36(4) for hole “a” and 0.20(10) for hole “b” showing that 232Th is more prone to the (n, x n) reaction than 238U . All the experimental reaction rates are compared with the simulated ones by generating neutron fluxes at the three holes from MCNPX 2.6c and making use of the LA150 library of cross-sections. The experimental and calculated reaction rates of all the three reactions are in reasonably good agreement. The transmutation power, P norm as well as P norm/P beam of the set-up is estimated using the reaction rates of the (n, \( \gamma\) and (n, 2n) reactions for both the samples in the three holes and compared with some of the results of the “Energy plus Transmutation” set-up and TARC experiment.


Neutron Energy 133Xe Cumulative Yield Lead Target 232Th Sample 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    C.D. Bowman et al., Nucl. Instrum. Methods A 320, 336 (1992)ADSCrossRefGoogle Scholar
  2. 2.
    A.J. Janssen, Transmutation of Fission Products in Reactors and Accelerator-Driven Systems, ECN-R-94-001 (1994)Google Scholar
  3. 3.
    C. Rubbia, J.A. Rubio, Conceptual design of a fast neutron operated high power energy amplifier, CERN/AT/95-44 (ET), (1995). See also C. Rubbia, A high gain energy amplifier operated with fast neutrons, Proceedings of the International Conference on Accelerator-Driven Transmutation Technologies and Applications, Las Vegas (NV) 1994, AIP Conf. Proc., vol. 346 (AIP Publishing, 1994)Google Scholar
  4. 4.
    F. Sokolov, K. Fukuda, H.P. Nawada, Thorium fuel cycle - Potential benefits and challenges, IAEA-TECDOC-1450 (2005)Google Scholar
  5. 5.
  6. 6.
    J.S. Hendricks, MCNPX, version 2.6.c, LA-UR-06-7991 (2006)Google Scholar
  7. 7.
    A. Fasso, A. Ferrari, J. Ranft, P.R. Sala, FLUKA: present status and future developments, in Proceedings of the IV International Conference on Calorimetry in High Energy Physics, La Biodola (Italy) 21-26 September (1993), edited by A. Menzione, A. Scribano (World Scientific, 1994) pp. 493-502Google Scholar
  8. 8.
    V.S. Barashenkov, Comput. Phys. Commun. 126, 28 (2000)ADSzbMATHCrossRefGoogle Scholar
  9. 9.
    C.H.M. Broeders, FZK 7183 (2006)Google Scholar
  10. 10.
    A.J. Koning, in Proceedings of the International Conference on Nuclear Data for Science and Technology, Santa Fe, USA, Sept. 26 -- Oct. 1 (2004) and
  11. 11.
    Y.A. Korovin et al., Nucl. Instrum. Methods A 562, 721 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    G.N. Kim et al., Nucl. Instrum. Methods A 485, 458 (2002)ADSCrossRefGoogle Scholar
  13. 13.
    G. Tagliente, n-TOF Collaboration, Braz. J. Phys. 34, 1033 (2004)CrossRefGoogle Scholar
  14. 14.
    A.K. Krasnykh, V.L. Lomidze, A.V. Novokhatsky, Yu.P. Popov, W.I. Furman (Editors), IREN Project. Intense Resonance Neutron Source, Frank Laboratory of Neutron Physics, JINR, Dubna (1994)Google Scholar
  15. 15.
    H.A. Abderrahim, P. Baeten et al., Nucl. Phys. News 20, 24 (2010)CrossRefGoogle Scholar
  16. 16.
    V. Shvetsov et al., Nucl. Instrum. Methods Phys. Res. A 562, 886 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    V.S. Barashenkov, H. Kumawat, V.A. Lobanova, V. Kumar, Nucl. Instrum. Methods Phys. Res. B 217, 352 (2004)ADSCrossRefGoogle Scholar
  18. 18.
    B. Blau et al., Neutron News 20, 5 (2009)CrossRefGoogle Scholar
  19. 19.
    Shinichi Sakamoto et al., Nucl. Instrum. Methods Phys. Res. A 562, 638 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    T. Ino et al., Nucl. Instrum. Methods A 525, 496 (2004)ADSCrossRefGoogle Scholar
  21. 21.
    E. Kim et al., Nucl. Sci. Eng. 129, 209 (1998)Google Scholar
  22. 22.
    A. Abanades et al., Nucl. Instrum. Methods A 478, 577 (2002)ADSCrossRefGoogle Scholar
  23. 23.
    J. Adam et al., Eur. Phys. J. A 43, 159 (2010)MathSciNetADSCrossRefGoogle Scholar
  24. 24.
    J. Adam, V.S. Barashenkov, H. Kumawat, V. Kumar et al., Kerntechnik 70, 127 (2005)Google Scholar
  25. 25.
    J. Adam, V.S. Barashenkov, H. Kumawat, V. Kumar et al., Euro. Phys. J. A 23, 61 (2005)ADSCrossRefGoogle Scholar
  26. 26.
    Yu.E. Titarenko et al., Phys. Rev. C 65, 064610 (2002)ADSCrossRefGoogle Scholar
  27. 27.
    Yu.E. Titarenko et al., Phys. Rev. C 78, 034615 (2008)ADSCrossRefGoogle Scholar
  28. 28.
    V. Kumar, Chitra Bhatia, H. Kumawat, CASCADE data for the A.D.S materials for its Benchmarking, in PSI Proceedings 09-01, 30 (2009)Google Scholar
  29. 29.
    V. Kumar, Chitra Bhatia, H. Kumawat, J. Adam, Eur. Phys. J. A 40, 231 (2009)ADSCrossRefGoogle Scholar
  30. 30.
    Manish Sharma, V. Kumar et al., Pramana J. Phys. 68, 307 (2007)ADSCrossRefGoogle Scholar
  31. 31.
    J. Banaigs, J. Berger, J. Dulfo, L. Goldzahl et al., Nucl. Instrum. Methods 95, 307 (1971)ADSCrossRefGoogle Scholar
  32. 32.
    J. Frana, J. Radioanal. Nucl. Chem. 257, 583 (2003)CrossRefGoogle Scholar
  33. 33.
    S.Y.F. Chu, L.P. Ekstrom, R.B. Firestone,
  34. 34.
    The JEFF-3.1 Nuclear Data Library, JEFF report 21, edited by A. Koning, Organisation for Economic Co-operation and Development, Nuclear Energy Agency, Paris, 2006Google Scholar
  35. 35.
    J. Adam, A. Balabekyan, V.S. Pronskikh et al., Appl. Rad. Isotopes 56, 607 (2002)CrossRefGoogle Scholar
  36. 36.
    V. Kumar, H. Kumawat, Chitra Bhatia, Probl. At. Sci. Technol. 4, 80 (2009)zbMATHGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • J. Adam
    • 1
    • 2
  • Chitra Bhatia
    • 3
  • K. Katovsky
    • 1
  • V. Kumar
    • 3
    • 7
    Email author
  • M. Majerle
    • 2
  • V. S. Pronskikh
    • 1
  • A. M. Khilmanovich
    • 4
  • B. A. Martsynkevich
    • 4
  • I. V. Zhuk
    • 5
  • V. M. Golovatiouk
    • 1
  • W. Westmeier
    • 5
  • A. A. Solnyshkin
    • 1
  • V. M. Tsoupko-Sitnikov
    • 1
  • A. S. Potapenko
    • 6
  1. 1.Joint Institute for Nuclear ResearchDubna (Moscow Region)Russian Federation
  2. 2.Czech Academy of ScienceNuclear Physics InstituteŘežCzech Republic
  3. 3.HENP Laboratory (ADS Program), Physics DepartmentUniversity of RajasthanJaipurIndia
  4. 4.Institute of Physics of National Academy of SciencesMinskBelarus
  5. 5.Kernchemie InstitutePhilips-UniversitätMarburgGermany
  6. 6.Joint Institute of Power and Nuclear ResearchSosny, MinskBelarus
  7. 7.University School of Basic and Applied SciencesGGS IPUniversityNew DelhiIndia

Personalised recommendations