Advertisement

Study of proton resonances in 18Ne via resonant elastic scattering of 17F + p and its astrophysical implication in the stellar reaction of 14O(α, p)17F

  • J. J. HeEmail author
  • J. Hu
  • S. W. Xu
  • Z. Q. Chen
  • X. Y. Zhang
  • J. S. Wang
  • H. W. Wang
  • W. D. Tian
  • X. Q. Yu
  • L. Y. Zhang
  • L. Li
  • Y. Y. Yang
  • P. Ma
  • X. H. Zhang
  • J. Su
  • E. T. Li
  • Z. G. Hu
  • Z. Y. Guo
  • X. Xu
  • X. H. Yuan
  • W. Lu
  • Y. H. Yu
  • Y. D. Zang
  • S. W. Ye
  • R. P. Ye
  • J. D. Chen
  • S. L. Jin
  • C. M. Du
  • S. T. Wang
  • J. B. Ma
  • L. X. Liu
  • Z. Bai
  • X. Q. Li
  • X. G. Lei
  • Z. Y. Sun
  • Y. H. Zhang
  • X. H. Zhou
  • H. S. Xu
Regular Article - Experimental Physics

Abstract

The stellar 14O (α, p) 17F reaction is thought to be one of the most important breakout reactions from the Hot CNO cycles into the rp-process in Type I X-ray bursters. In the present work, the properties of proton resonances in 18Ne have been investigated efficiently by utilizing a technique of proton resonant elastic scattering with a 17F radioactive-ion (RI) beam and a thick proton target. A 4.22 MeV/nucleon 17F RI beam, which was produced via a projectile-fragmentation reaction and experiencing a series of energy degradation, was separated by a Radioactive Ion Beam Line in Lanzhou (RIBLL) and bombarded a (CH2)n target. Energy spectra of the recoiled protons were measured by two sets of ΔE-E silicon telescope at center-of-mass scattering angles of θ c.m. ≈ 175° ± 5°, θ c.m. ≈ 152° ± 8°, respectively. Several proton resonances in 18Ne were observed, and their resonant parameters have been determined by an R-matrix analysis of the differential cross-sections. A doublet structure around 7.10 MeV has been identified and thought to be one state at 7.05 MeV (2+) and another one at 7.12 MeV (4+). The presently calculated total reaction rates of 14O (α, p) 17F are, at least, a factor of 1.2 ∼ 1.9 larger than the previous ones in a temperature region of 1.7 ∼ 3.0 GK mainly owing to the contribution from the 7.05 MeV (2+) state. This result implies that this breakout reaction may play a more important role than previously expected.

Keywords

Proton Resonance Spectroscopic Factor Resonance Strength Doublet Structure Resonant Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    S.E. Woosley, R.E. Taam, Nature 263, 101 (1976).ADSCrossRefGoogle Scholar
  2. 2.
    A.E. Champage, M. Wiescher, Annu. Rev. Nucl. Part. Sci. 42, 39 (1992).ADSCrossRefGoogle Scholar
  3. 3.
    M. Wiescher, H. Schatz, A.E. Champagne, Philos. Trans. R. Soc. A 356, 2105 (1998).ADSCrossRefGoogle Scholar
  4. 4.
    R.E. Taam, Annu. Rev. Nucl. Part. Sci. 35, 1 (1985).ADSCrossRefGoogle Scholar
  5. 5.
    D.W. Bardayan et al., Phys. Rev. C 62, 055804 (2000).ADSCrossRefGoogle Scholar
  6. 6.
    H. Schatz et al., Phys. Rep. 293, 167 (1998).ADSCrossRefGoogle Scholar
  7. 7.
    H. Schatz et al., Phys. Rev. Lett. 86, 3471 (2001).ADSCrossRefGoogle Scholar
  8. 8.
    M. Breitenfeldt et al., Phys. Rev. C 80, 035805 (2009).ADSCrossRefGoogle Scholar
  9. 9.
    M. Wiescher et al., Astrophys. J. 316, 162 (1987).ADSCrossRefGoogle Scholar
  10. 10.
    C. Funck, K. Langanke, Nucl. Phys. A 480, 1888 (1988).CrossRefGoogle Scholar
  11. 11.
    C. Funck, B. Grund, K. Langanke, Z. Phys. A 332, 109 (1989).ADSGoogle Scholar
  12. 12.
    K.I. Hahn et al., Phys. Rev. C 54, 1999 (1996).ADSCrossRefGoogle Scholar
  13. 13.
    G. Audi, A.H. Wapstra, C. Thibault, Nucl. Phys. A 729, 337 (2003).ADSCrossRefGoogle Scholar
  14. 14.
    B. Harss et al., Phys. Rev. Lett. 82, 3964 (1999).ADSCrossRefGoogle Scholar
  15. 15.
    J. Gómez del Campo et al., Phys. Rev. Lett. 86, 43 (2001).ADSCrossRefGoogle Scholar
  16. 16.
    B. Harss et al., Phys. Rev. C 65, 035803 (2002).ADSCrossRefGoogle Scholar
  17. 17.
    H.T. Fortune, R. Sherr, Phys. Rev. Lett. 84, 1635 (2000).ADSCrossRefGoogle Scholar
  18. 18.
    J.J. He et al., Phys. Rev. C 80, 042801 (2009).ADSCrossRefGoogle Scholar
  19. 19.
    J.J. He et al., Nucl. Phys. A 834, 670 (2010).ADSCrossRefGoogle Scholar
  20. 20.
    J.C. Blackmon et al., Nucl. Phys. A 718, 127 (2003).ADSCrossRefGoogle Scholar
  21. 21.
    J.J. He, arXiv:1001.2053v1 [astro-ph.SR] (2010).
  22. 22.
    K.P. Artemov et al., Sov. J. Nucl. Phys. 52, 408 (1990).Google Scholar
  23. 23.
    S. Kubono, Nucl. Phys. A 693, 221 (2001).ADSCrossRefGoogle Scholar
  24. 24.
    T. Teranishi et al., Phys. Lett. B 650, 129 (2007).ADSCrossRefGoogle Scholar
  25. 25.
    J.J. He et al., Phys. Rev. C 76, 055802 (2007).ADSCrossRefGoogle Scholar
  26. 26.
    J.J. He et al., Phys. Rev. C 80, 015801 (2009).ADSCrossRefGoogle Scholar
  27. 27.
    J.W. Xia et al., Nucl. Instrum. Methods Phys. Res. A 488, 11 (2002).ADSCrossRefGoogle Scholar
  28. 28.
    W.L. Zhan et al., Nucl. Phys. A 834, 694 (2010).ADSCrossRefGoogle Scholar
  29. 29.
    Z. Sun et al., Nucl. Instrum. Methods A 503, 496 (2003).ADSCrossRefGoogle Scholar
  30. 30.
    P. Ma, At. Energy Sci. Techol. (2010) in pressGoogle Scholar
  31. 31.
    Micron Semiconductor Ltd., Lancing, UK. Please see: http://www.micronsemiconductor.co.uk/
  32. 32.
    J.F. Ziegler, The Stopping and Range of Ions in Solids (Pergamon Press, New York, 1985).Google Scholar
  33. 33.
    A.M. Lane, R.G. Thomas, Rev. Mod. Phys. 30, 257 (1958).MathSciNetADSCrossRefGoogle Scholar
  34. 34.
    P. Descouvemont, Theoretical Models for Nuclear Astrophysics (Nova Science Publishers Inc., New York, 2003).Google Scholar
  35. 35.
    C.R. Brune, Phys. Rev. C 66, 044611 (2002).ADSCrossRefGoogle Scholar
  36. 36.
    A.St.J. Murphy et al., Phys. Rev. C 79, 058801 (2009).ADSCrossRefGoogle Scholar
  37. 37.
    A.V. Nero, E.G. Adelberger, F.S. Dietrich, Phys. Rev. C 24, 1864 (1981).ADSCrossRefGoogle Scholar
  38. 38.
    M. Notani et al., Nucl. Phys. A 738, 411 (2004).ADSCrossRefGoogle Scholar
  39. 39.
    M. Notani et al., Nucl. Phys. A 746, 113 (2004).ADSCrossRefGoogle Scholar
  40. 40.
    S. Kubono et al., Eur. Phys. J. A 27, 327 (2006).ADSCrossRefGoogle Scholar
  41. 41.
    A.R. Barnett et al., Comput. Phys. Commun. 8, 377 (1974).ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • J. J. He
    • 1
    Email author
  • J. Hu
    • 1
    • 2
  • S. W. Xu
    • 1
  • Z. Q. Chen
    • 1
  • X. Y. Zhang
    • 1
  • J. S. Wang
    • 1
  • H. W. Wang
    • 3
  • W. D. Tian
    • 3
  • X. Q. Yu
    • 1
  • L. Y. Zhang
    • 1
    • 2
  • L. Li
    • 1
    • 2
  • Y. Y. Yang
    • 1
    • 2
  • P. Ma
    • 1
  • X. H. Zhang
    • 1
  • J. Su
    • 4
  • E. T. Li
    • 4
  • Z. G. Hu
    • 1
  • Z. Y. Guo
    • 1
  • X. Xu
    • 1
    • 2
  • X. H. Yuan
    • 1
  • W. Lu
    • 1
    • 2
  • Y. H. Yu
    • 1
  • Y. D. Zang
    • 1
    • 2
  • S. W. Ye
    • 1
    • 2
  • R. P. Ye
    • 1
    • 2
  • J. D. Chen
    • 1
    • 2
  • S. L. Jin
    • 1
    • 2
  • C. M. Du
    • 1
    • 2
  • S. T. Wang
    • 1
    • 2
  • J. B. Ma
    • 1
  • L. X. Liu
    • 1
    • 2
  • Z. Bai
    • 1
    • 2
  • X. Q. Li
    • 5
  • X. G. Lei
    • 1
  • Z. Y. Sun
    • 1
  • Y. H. Zhang
    • 1
  • X. H. Zhou
    • 1
  • H. S. Xu
    • 1
  1. 1.Institute of Modern PhysicsChinese Academy of Sciences (CAS)LanzhouChina
  2. 2.Graduate School of Chinese Academy of SciencesBeijingChina
  3. 3.Shanghai Institute of Applied Physics (SINAP)Chinese Academy of SciencesShanghaiChina
  4. 4.China Institute of Atomic Energy (CIAE)BeijingChina
  5. 5.School of Physics and State Key Laboratory of Nuclear Physics and TechnologyPeking UniversityBeijingChina

Personalised recommendations