Advertisement

Role of quark-interchange processes in evolution of mesonic matter

  • Yu -Qi Li
  • Xiao -Ming XuEmail author
  • Hui -Jun Ge
Regular Article - Theoretical Physics

Abstract

We divide the cross-section for a meson-meson reaction into three parts. The first part is for the quark-interchange process, the second for quark-antiquark annihilation processes and the third for resonant processes. Master rate equations are established to yield time dependence of fugacities of pions, rhos, kaons and vector kaons. The equations include cross-sections for inelastic scattering of pions, rhos, kaons and vector kaons. Cross-sections for quark-interchange-induced reactions, that were obtained in a potential model, are parametrized for convenient use. The number densities of π and ρ (K and K * are altered by quark-interchange processes in equal magnitudes but opposite signs. The master rate equations combined with the hydrodynamic equations for longitudinal and transverse expansion are solved with many sets of initial meson fugacities. Quark-interchange processes are shown to be important in the contribution of the inelastic meson-meson scattering to the evolution of mesonic matter.

Keywords

Hadronic Matter Annihilation Process Local Reference Frame Transverse Expansion Resonant Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    H. Sorge, H. Stöcker, W. Greiner, Ann. Phys. (N.Y.) 192, 266 (1989).ADSzbMATHCrossRefGoogle Scholar
  2. 2.
    H. Sorge, Phys. Rev. C 52, 3291 (1995).ADSCrossRefGoogle Scholar
  3. 3.
    B.-A. Li, C.M. Ko, Phys. Rev. C 52, 2037 (1995).ADSCrossRefGoogle Scholar
  4. 4.
    Z.-W. Lin, C.M. Ko, B.-A. Li, B. Zhang, S. Pal, Phys. Rev. C 72, 064901 (2005).ADSCrossRefGoogle Scholar
  5. 5.
    W. Cassing, E.L. Bratkovskaya, Phys. Rep. 308, 65 (1999).ADSCrossRefGoogle Scholar
  6. 6.
    S.A. Bass et al., Prog. Part. Nucl. Phys. 41, 255 (1998).ADSCrossRefGoogle Scholar
  7. 7.
    C. Nonaka, S.A. Bass, Phys. Rev. C 75, 014902 (2007).ADSCrossRefGoogle Scholar
  8. 8.
    D.E. Kahana, S.H. Kahana, Phys. Rev. C 58, 3574 (1998).ADSCrossRefGoogle Scholar
  9. 9.
    D.E. Kahana, S.H. Kahana, Phys. Rev. C 59, 1651 (1999).ADSCrossRefGoogle Scholar
  10. 10.
    B.-H. Sa, A. Tai, Comput. Phys. Commun. 90, 121 (1995).ADSCrossRefGoogle Scholar
  11. 11.
    A. Tai, B.-H. Sa, Comput. Phys. Commun. 116, 353 (1999).ADSCrossRefGoogle Scholar
  12. 12.
    T.J. Humanic, Phys. Rev. C 57, 866 (1998).ADSCrossRefGoogle Scholar
  13. 13.
    Y. Nara, N. Otuka, A. Ohnishi, K. Niita, S. Chiba, Phys. Rev. C 61, 024901 (1999).ADSCrossRefGoogle Scholar
  14. 14.
    T. Hirano, U. Heinz, D. Kharzeev, R. Lacey, Y. Nara, Phys. Lett. B 636, 299 (2006).ADSCrossRefGoogle Scholar
  15. 15.
    L. Alvarez-Ruso, V. Koch, Phys. Rev. C 65, 054901 (2002).ADSCrossRefGoogle Scholar
  16. 16.
    S. Gavin, Nucl. Phys. B 351, 561 (1991).ADSCrossRefGoogle Scholar
  17. 17.
    C. Song, V. Koch, Phys. Rev. C 55, 3026 (1997).ADSCrossRefGoogle Scholar
  18. 18.
    S. Pratt, K. Haglin, Phys. Rev. C 59, 3304 (1999).ADSCrossRefGoogle Scholar
  19. 19.
    PHENIX Collaboration (S.S. Adler et al.), Phys. Rev. C 69, 034909 (2004).CrossRefGoogle Scholar
  20. 20.
    STAR Collaboration (C. Adler et al.), Phys. Lett. B 595, 143 (2004).ADSCrossRefGoogle Scholar
  21. 21.
    BRAHMS Collaboration (I. Arsene et al.), Nucl. Phys. A 757, 1 (2005).CrossRefGoogle Scholar
  22. 22.
    PHOBOS Collaboration (B.B. Back et al.), Nucl. Phys. A 757, 28 (2005).ADSCrossRefGoogle Scholar
  23. 23.
    STAR Collaboration (J. Adams et al.), Phys. Rev. Lett. 92, 092301 (2004).CrossRefGoogle Scholar
  24. 24.
    C. Amsler, N.A. Törnqvist, Phys. Rep. 389, 61 (2004).ADSCrossRefGoogle Scholar
  25. 25.
    D.V. Bugg, Phys. Rep. 397, 257 (2004).ADSCrossRefGoogle Scholar
  26. 26.
    Y.-Q. Li, X.-M. Xu, Nucl. Phys. A 794, 210 (2007).ADSCrossRefGoogle Scholar
  27. 27.
    T. Barnes, E.S. Swanson, Phys. Rev. D 46, 131 (1992).ADSCrossRefGoogle Scholar
  28. 28.
    E.S. Swanson, Ann. Phys. (N.Y.) 220, 73 (1992).ADSCrossRefGoogle Scholar
  29. 29.
    J.D. Bjorken, Phys. Rev. D 27, 140 (1983).ADSCrossRefGoogle Scholar
  30. 30.
    H. Sorge, Phys. Lett. B 402, 251 (1997).ADSCrossRefGoogle Scholar
  31. 31.
    L.V. Bravina et al., Phys. Rev. C 60, 024904 (1999).ADSCrossRefGoogle Scholar
  32. 32.
    P.F. Kolb, J. Sollfrank, U. Heinz, Phys. Lett. B 459, 667 (1999).ADSCrossRefGoogle Scholar
  33. 33.
    P.F. Kolb, J. Sollfrank, U. Heinz, Phys. Rev. C 62, 054909 (2000).ADSCrossRefGoogle Scholar
  34. 34.
    W. Buchmüller, S.-H.H. Tye, Phys. Rev. D 24, 132 (1981).ADSCrossRefGoogle Scholar
  35. 35.
    X.-M. Xu, Nucl. Phys. A 697, 825 (2002).ADSCrossRefGoogle Scholar
  36. 36.
    T. Barnes, E.S. Swanson, C.-Y. Wong, X.-M. Xu, Phys. Rev. C 68, 014903 (2003).ADSCrossRefGoogle Scholar
  37. 37.
    G.E. Brown, C.M. Ko, Z.G. Wu, L.H. Xia, Phys. Rev. C 43, 1881 (1991).ADSCrossRefGoogle Scholar
  38. 38.
    W. Cassing, E.L. Bratkovskaya, U. Mosel, S. Teis, A. Sibirtsev, Nucl. Phys. A 614, 415 (1997).ADSCrossRefGoogle Scholar
  39. 39.
    Particle Data Group (W.-M. Yao et al.), J. Phys. G 33, 1 (2006).ADSCrossRefGoogle Scholar
  40. 40.
    F. Karsch, E. Laermann, A. Peikert, Nucl. Phys. B 605, 579 (2001).ADSCrossRefGoogle Scholar
  41. 41.
    X.-N. Wang, M. Gyulassy, Phys. Rev. D 44, 3501 (1991).ADSCrossRefGoogle Scholar
  42. 42.
    M. Gyulassy, X.-N. Wang, Comput. Phys. Commun. 83, 307 (1994).ADSCrossRefGoogle Scholar
  43. 43.
    X.-N. Wang, Phys. Rep. 280, 287 (1997).CrossRefGoogle Scholar
  44. 44.
    X.-M. Xu, D. Kharzeev, H. Satz, X.-N. Wang, Phys. Rev. C 53, 3051 (1996).ADSCrossRefGoogle Scholar
  45. 45.
    T.S. Biró, P. Lévai, J. Zimányi, Phys. Rev. C 59, 1574 (1999).ADSCrossRefGoogle Scholar
  46. 46.
    O. Barannikova, for the STAR Collaboration, arXiv:nucl-ex/0403014v1
  47. 47.
    P. Lévai, B. Müller, X.-N. Wang, Phys. Rev. C 51, 3326 (1995).ADSCrossRefGoogle Scholar
  48. 48.
    V. Flaminio, W.G. Moorhead, D.R.O. Morrison, N. Rivoire, CERN, Geneva Report No. CERN-HERA-84-01, 1984Google Scholar
  49. 49.
    H. von Gersdorff, L. McLerran, M. Kataja, P.V. Ruuskanen, Phys. Rev. D 34, 794 (1986).ADSCrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of PhysicsShanghai UniversityBaoshan, ShanghaiChina

Personalised recommendations