Measurement of the neutron capture cross-section of 232Th using the neutron activation technique

  • H. Naik
  • P. M. Prajapati
  • S. V. Surayanarayana
  • K. C. Jagadeesan
  • S. V. Thakare
  • D. Raj
  • V. K. Mulik
  • B. S. Sivashankar
  • B. K. Nayak
  • S. C. Sharma
  • S. Mukherjee
  • Sarbjit Singh
  • A. Goswami
  • S. Ganesan
  • V. K. Manchanda
Regular Article - Experimental Physics


The 232Th(n,\( \gamma\)) reaction cross-section at average neutron energies of 3.7±0.3 MeV and 9.85±0.38 MeV from the 7Li(p, n) reaction has been determined for the first time using activation and off-line \( \gamma\) -ray spectrometric technique. The 232Th(n, 2n) reaction cross-section at the average neutron energy of 9.85±0.38 MeV has been also determined using the same technique. The experimentally determined 232Th(n,\( \gamma\)) and 232Th(n, 2n) reaction cross-sections were compared with the evaluated data of ENDF/B-VII, JENDL-4.0 and JEFF-3.1 and were found to be in good agreement. The present data along with literature data in a wide range of neutron energies were interpreted in terms of competition between different reaction channels including fission. The 232Th(n,\( \gamma\)) and 232Th(n, 2n) reaction cross-sections were also calculated theoretically using the TALYS 1.2 computer code and were found to be slightly higher than the experimental data.


Neutron Energy Proton Energy Neutron Spectrum Tron Energy Tantalum Foil 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    F. Carminati, R. Klapisch, J.P. Revol, Ch. Roche, J.A. Rubio, C. Rubbia, An Energy Amplifier for Cleaner and Inexhaustible Nuclear Energy Production Driven by Particle Beam Accelerator, CERN Report No. CERN/AT/93-47 (ET) 1993Google Scholar
  2. 2.
    C. Rubbia, J.A. Rubio, S. Buono, F. Carminati, N. Fietier, J. Galvez, C. Geles, Y. Kadi, R. Klapisch, P. Mandrilion, J.P. Revol, Ch. Roche, Conceptual Design Of a Fast Neutron Operated High Power Energy Amplifier, CERN Report No. CERN/AT/95-44 (ET) 1995Google Scholar
  3. 3.
    E.D. Arthur, S.A. Schriber, A. Rodriguez (Editors), The International Conference on Accelerator-Driven Transmutation Technologies and Applications, Las Vegas, Nevada, USA, 1994, AIP Conf. Proc., Vol. 346 (1995)Google Scholar
  4. 4.
    Accelerator Driven Systems: Energy Generation and Transmutation of Nuclear Waste, Status report: IAEA- TECDOC-985 (Nov. 1997)Google Scholar
  5. 5.
    C.D. Bowman, Annu. Rev. Nucl. Part. Sci. 48, 505 (1998)ADSCrossRefGoogle Scholar
  6. 6.
    S. Ganesan, Pramana J. Phys. 68, 257 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    R.K. Sinha, A. Kakodkar, Nucl. Eng. Des. 236, 683 (2006)CrossRefGoogle Scholar
  8. 8.
    S. Ganesan, Creation of Indian Experimental Benchmarks for Thorium Fuel Cycle, IAEA Coordinated Research Project on Evaluated Data for Thorium- Uranium fuel Cycle, Third Research Co-ordination Meeting, 30 January to 2 February 2006, Vienna, Austria, INDC (NDS) - 0494 (2006)Google Scholar
  9. 9.
    L. Mathieu, Proportion for a very simple Thorium Molten Salt reactor, in Proceedings of the Global International Conference, Tsukuba, Japan, 2005, Paper No. 428Google Scholar
  10. 10.
    Fast Reactors and Accelerator Driven Systems Knowledge Base, IAEA-TECDOC-1319: Thorium fuel utilization: Options and Trends (Nov. 2002)Google Scholar
  11. 11.
    A. Nuttin, D. Heuer, A. Billebaud, R. Brissot, C. Le Brun, E. Liatard, J.M. Loiseaux, L. Mathieu, O. Meplan, E. Merle-Lucotte, H. Nifenecker, F. Perdu, S. David, Proc. Nucl. Energy 46, 77 (2005)CrossRefGoogle Scholar
  12. 12.
    T.R. Allen, D.C. Crawford, Sci. Technol. Nucl. Install., Article ID 97486 (2007)Google Scholar
  13. 13.
    V.G. Pronyaev, Summary Report of the Consultants’ Meeting on Assessment of Nuclear Data Needs for Thorium and Other Advanced Cycles, INDC (NDS) - 408 (International Atomic Energy Agency, 1999)Google Scholar
  14. 14.
    B.D. Kuz’minov, V.N. Manokhin, Status of Nuclear Data for Thorium Fuel Cycle, Nucl. Constants, Issue No. 3-4, 41 (1997)Google Scholar
  15. 15.
    E.T. Cheng, D.R. Mathews, The Influence of Nuclear Data Uncertainties on Thorium Fusion-Fission Hybrid Blanket Nucleonic Performance, in Proceedings of the International Conference on Nuclear Cross Sections for Technology, Knoxville, Tennessee, October 22-26, 1979, NBS-SP 594 (National Bureau of Standards, 1980) p. 834Google Scholar
  16. 16.
    D.E. Bartine, The Use of Thorium in Fast Breeder Reactors, in Proceedings of the International Conference on Nuclear Cross Sections for Technology, Knoxville, Tennessee, October 22-26, 1979, NBS-SP 594 (National Bureau of Standards, 1980) p. 119Google Scholar
  17. 17.
    S. Pelloni, G. Youinou, P. Wydler, Impact of different nuclear data on the performance of fast spectrum based on the thorium-uranium fuel cycle, in Proceedings of the International Conference on Nuclear Data for Science and Technology, Trieste, Italy, May 19-24, 1997, Vol. 59, part II (Italian Physical Society, Bologna, 1997) p. 1172Google Scholar
  18. 18.
    M. Salvatores, Experimental facilities, training and expertise in the nuclear data field: Needs and gaps for reactor physics applications, in Proceedings of the International Conference on Nuclear Data for Science and Technology, Trieste, Italy, May 19-24, 1997, edited by G. Reffo, A. Ventura, C. Grandi, Vol. 59, part I (Italian Physical Society, Bologna, 1997) pp. 3-17Google Scholar
  19. 19.
    R.C. Little, R.C. Block, D.R. Harris, R.E. Slovacek, O.N. Carlson, Nucl. Sci. Eng. 79, 175 (1981)Google Scholar
  20. 20.
    A. Borella, K. Volev, A. Brusegan, P. Schillebeeckx, F. Corvi, N. Koyumdjieva, N. Janeva, A.A. Lukyanov, Nucl. Sci. Eng. 152, 1 (2006)Google Scholar
  21. 21.
    G. Aerts et al., Phys. Rev. C 73, 054610 (2006)ADSCrossRefGoogle Scholar
  22. 22.
    H. Pomerance, Phys. Rev. 88, 412 (1952)ADSCrossRefGoogle Scholar
  23. 23.
    R.L. Macklin, N.H. Lazar, W.S. Lyon, Phys. Rev. 107, 504 (1957)ADSCrossRefGoogle Scholar
  24. 24.
    J.A. Miskel, K.V. Marsh, M. Lindner, R.J. Nagle, Phys. Rev. 128, 2717 (1962)ADSCrossRefGoogle Scholar
  25. 25.
    D.C. Stupegia, B. Smith, K. Hamm, J. Inorg. Nucl. Chem. 25, 627 (1963)CrossRefGoogle Scholar
  26. 26.
    M.C. Muxon, TRDWP/P-8 (U.K. Atomic Energy Authority, Harwell, 1963)Google Scholar
  27. 27.
    L. Forman, A.D. Schelberg, J.H. Warren, N.W. Glass, Phys. Rev. Lett. 27, 117 (1971)ADSCrossRefGoogle Scholar
  28. 28.
    V.B. Chelnokov, USSR Obninsk Report, Jaderno Fizicheskii Issledovanija No. 13 (Oct. 1972) p. 16Google Scholar
  29. 29.
    M. Lindner, R.J. Nagle, J.H. Landrum, Nucl. Sci. Eng. 59, 381 (1976)Google Scholar
  30. 30.
    R.E. Chrien, H.I. Liou, M.J. Kenny, M.L. Stelts, Nucl. Sci. Eng. 72, 202 (1979)Google Scholar
  31. 31.
    G.T. Baldwin, G.F. Knoll, Nucl. Sci. Eng. 88, 123 (1984)Google Scholar
  32. 32.
    R.T. Jones, J.S. Merritt, A. Okazaki, Nucl. Sci. Eng. 93, 171 (1986)Google Scholar
  33. 33.
    K. Wisshak, F. Voss, F. Kappeler, Nucl. Sci. Eng. 137, 183 (2001)Google Scholar
  34. 34.
    D. Karamanis, M. Petit, S. Andriamonje, G. Barreau, M. Bercion, A. Billebaud, B. Blank, S. Czajkowski, R. Del Moral, J. Giovinazzo, V. Lacoste, C. Marchand, L. Perrot, M. Pravikoff, J.C. Thomas, Nucl. Sci. Eng. 139, 282 (2001)Google Scholar
  35. 35.
    J.L. Perkin, L.P. O’Connor, R.F. Colemann, Proc. Phys. Soc. London 72, 505 (1958)ADSCrossRefGoogle Scholar
  36. 36.
    R.J. Prestwood, B.P. Bayhurst, Phys. Rev. 121, 1438 (1961)ADSCrossRefGoogle Scholar
  37. 37.
    J.P. Butler, D.C. Santry, Can. J. Chem. 39, 689 (1961)CrossRefGoogle Scholar
  38. 38.
    R. Batchelor, W.B. Gilboy, J.H. Towle, Nucl. Phys. 65, 236 (1965)CrossRefGoogle Scholar
  39. 39.
    M. Bormann, Nucl. Phys. 65, 257 (1965)CrossRefGoogle Scholar
  40. 40.
    H. Karius, A. Ackermann, W. Scobel, J. Phys. (G) 5, 715 (1979)ADSCrossRefGoogle Scholar
  41. 41.
    H. Chatani, Nucl. Instrum. Methods 205, 501 (1983)CrossRefGoogle Scholar
  42. 42.
    P. Raics, S. Daroczy, J. Csikai, N.V. Kornilov, V.Ya. Baryba, O.A. Salnikov, Phys. Rev. C 32, 87 (1985)ADSCrossRefGoogle Scholar
  43. 43.
    D. Karamanis, S. Andriamonje, P.A. Assimakopoulos, G. Dourkellis, D.A. Karademos, A. Karydas, M. Kokkoris, S. Korrssionides, N.G. Nicolis, C. Papachristodoulou, C.T. Papadopoulos, N. Patronis, P. Pavlopulous, G. Perdikakis, R. Vlastos, the n-TOF Collaboration, Nucl. Instrum. Methods Phys. Res. A 505, 381 (2003)ADSCrossRefGoogle Scholar
  44. 44.
    J. Adam, A.R. Balabekyan, V.S. Barashenkov, R. Brandt, V.M. Golovatiouk, V.G. Kalinnikov, K. Katovosky, M.I. Krivopustov, V. Kumar, H. Kumawat, R. Odoj, V.S. Pronskikh, A.A. Solnyshkin, V.I. Stegailov, V.M. Tsoupko-Sitnikov, W. Westmeier, Eur. Phys. J. A. 23, 61 (2005)ADSCrossRefGoogle Scholar
  45. 45.
    H. Liskien, A. Paulsen, At. Data Nucl. Data Tables 15, 57 (1975)ADSCrossRefGoogle Scholar
  46. 46.
    C.H. Poppe, J.D. Anderson, J.C. Davis, S.M. Grimes, C. Wong, Phys. Rev. C 14, 438 (1976)ADSCrossRefGoogle Scholar
  47. 47.
    J.W. Meadows, D.L. Smith, Neutrons from proton bombardment of natural Lithium, Argonne National Laboratory Report ANL-7983 (1972)Google Scholar
  48. 48.
    P.K. Mukhopadhyaya, personal communication (2001)Google Scholar
  49. 49.
    The International Reactor Dosimetry File:IRDF-2002 (Nuclear Data Section, International Atomic Energy Agency, 2002)Google Scholar
  50. 50.
    J. Blachot, Nucl. Data Sheets 104, 967 (2005)ADSCrossRefGoogle Scholar
  51. 51.
    L.E. Glendenin, J.E. Gindler, I. Ahmad, D.J. Henderson, J.W. Meadows, Phys. Rev. C 22, 152 (1980)ADSCrossRefGoogle Scholar
  52. 52.
    J. Blons, C. Mazur, D. Paya, Phys. Rev. Lett. 35, 1749 (1975)ADSCrossRefGoogle Scholar
  53. 53.
    B. Singh, J.K. Tuli, Nucl. Data Sheets 105, 109 (2005)ADSCrossRefGoogle Scholar
  54. 54.
    E. Browne, Nucl. Data Sheets 93, 763 (2001)ADSCrossRefGoogle Scholar
  55. 55.
    M.B. Chadwick et al., Nucl. Data Sheets 107, 2931 (2006)ADSCrossRefGoogle Scholar
  56. 56.
    K. Shibata et al., J. Nucl. Sci. Technol. 48, 1 (2011)CrossRefADSGoogle Scholar
  57. 57.
    A.J. Koning, The JEFF evaluated data project, in Proceedings of the International Conference on Nuclear Data for Science and Technology, Nice, 2007 (EDP Sciences, 2008)Google Scholar
  58. 58.
    IAEA-EXFOR Database, at
  59. 59.
    A.J. Koning, S. Hilaire, M.C. Duijvestijn, Proceedings of the International Conference on Nuclear Data for Science and Technology, ND 2004, Santa Fe, 2004, edited by R.C. Haight, M.B. Chadwick, T. Kawano, P. Talou, AIP Conf. Proc. 769, 1154 (2005)Google Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • H. Naik
    • 1
  • P. M. Prajapati
    • 2
    • 3
  • S. V. Surayanarayana
    • 4
  • K. C. Jagadeesan
    • 5
  • S. V. Thakare
    • 5
  • D. Raj
    • 2
  • V. K. Mulik
    • 6
  • B. S. Sivashankar
    • 7
  • B. K. Nayak
    • 4
  • S. C. Sharma
    • 4
  • S. Mukherjee
    • 3
  • Sarbjit Singh
    • 1
  • A. Goswami
    • 1
  • S. Ganesan
    • 2
  • V. K. Manchanda
    • 1
  1. 1.Radiochemistry DivisionBhabha Atomic Research CentreMumbaiIndia
  2. 2.Reactor Physics Design DivisionBhabha Atomic Research CentreMumbaiIndia
  3. 3.Physics Department, Faculty of ScienceThe M. S. University of BarodaVadodaraIndia
  4. 4.Nuclear Physics DivisionBhabha Atomic Research CentreMumbaiIndia
  5. 5.Radiopharmaceutical DivisionBhabha Atomic Research CentreMumbaiIndia
  6. 6.Department of PhysicsUniversity of PunePuneIndia
  7. 7.Department of StatisticsManipal UniversityManipalIndia

Personalised recommendations