Advertisement

Transverse-momentum-dependent parton distribution/fragmentation functions at an electron-ion collider

  • M. Anselmino
  • H. Avakian
  • D. Boer
  • F. Bradamante
  • M. Burkardt
  • J. P. Chen
  • E. Cisbani
  • M. Contalbrigo
  • D. Crabb
  • D. Dutta
  • L. Gamberg
  • H. Gao
  • D. Hasch
  • J. Huang
  • M. Huang
  • Z. Kang
  • C. Keppel
  • G. Laskaris
  • Z. -T. Liang
  • M. X. Liu
  • N. Makins
  • R. D. Mckeown
  • A. Metz
  • Z. -E. Meziani
  • B. Musch
  • J. -C. Peng
  • A. Prokudin
  • X. Qian
  • Y. Qiang
  • J. W. Qiu
  • P. Rossi
  • P. Schweitzer
  • J. Soffer
  • V. Sulkosky
  • Y. Wang
  • B. Xiao
  • Q. Ye
  • Q. -J. Ye
  • F. Yuan
  • X. Zhan
  • Y. Zhang
  • W. Zheng
  • J. Zhou
Open Access
Special Article - Tools for Experiment and Theory

Abstract.

We present a summary of a recent workshop held at Duke University on Partonic Transverse Momentum in Hadrons: Quark Spin-Orbit Correlations and Quark-Gluon Interactions. The transverse-momentum-dependent parton distribution functions (TMDs), parton-to-hadron fragmentation functions, and multi-parton correlation functions, were discussed extensively at the Duke workshop. In this paper, we summarize first the theoretical issues concerning the study of partonic structure of hadrons at a future electron-ion collider (EIC) with emphasis on the TMDs. We then present simulation results on experimental studies of TMDs through measurements of single-spin asymmetries (SSA) from semi-inclusive deep inelastic scattering (SIDIS) processes with an EIC, and discuss the requirement of the detector for SIDIS measurements. The dynamics of parton correlations in the nucleon is further explored via a study of SSA in D (\( \bar{{D}}\) production at large transverse momenta with the aim of accessing the unexplored tri-gluon correlation functions. The workshop participants identified the SSA measurements in SIDIS as a golden program to study TMDs in both the sea and valence quark regions and to study the role of gluons, with the Sivers asymmetry measurements as examples. Such measurements will lead to major advancement in our understanding of TMDs in the valence quark region, and more importantly also allow for the investigation of TMDs in the unexplored sea quark region along with a study of their evolution.

Keywords

Fragmentation Function Gauge Link Siver Function HERMES Collaboration Compass Collaboration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    F. Caola, S. Forte, J. Rojo, arXiv:1007.5405 [hep-ph] (2010)
  2. 2.
    J.P. Ralston, D.E. Soper, Nucl. Phys. B 152, 109 (1979)ADSGoogle Scholar
  3. 3.
    D.W. Sivers, Phys. Rev. D 41, 83 (1990)ADSGoogle Scholar
  4. 4.
    A. Kotzinian, Nucl. Phys. B 441, 234 (1995) arXiv:hep-ph/9412283 ADSGoogle Scholar
  5. 5.
    P.J. Mulders, R.D. Tangerman, Nucl. Phys. B 461, 197 (1996) hep-ph/9510301ADSGoogle Scholar
  6. 6.
    D. Boer, P.J. Mulders, Phys. Rev. D 57, 5780 (1998) arXiv:hep-ph/9711485 ADSGoogle Scholar
  7. 7.
    P.J. Mulders, J. Rodrigues, Phys. Rev. D 63, 094021 (2001) arXiv:hep-ph/0009343 ADSGoogle Scholar
  8. 8.
    A.V. Belitsky, X.-D. Ji, F. Yuan, Phys. Rev. D 69, 074014 (2004) arXiv:hep-ph/0307383 ADSGoogle Scholar
  9. 9.
    A. Bacchetta et al., JHEP 02, 093 (2007) arXiv:hep-ph/0611265 ADSGoogle Scholar
  10. 10.
    M. Burkardt, Phys. Rev. D 62, 071503 (2000) arXiv:hep-ph/0005108 ADSGoogle Scholar
  11. 11.
    K. Goeke, M.V. Polyakov, M. Vanderhaeghen, Prog. Part. Nucl. Phys. 47, 401 (2001) arXiv:hep-ph/0106012 ADSGoogle Scholar
  12. 12.
    M. Burkardt, Int. J. Mod. Phys. A 18, 173 (2003) arXiv:hep-ph/0207047 ADSMATHGoogle Scholar
  13. 13.
    M. Diehl, Phys. Rep. 388, 41 (2003) arXiv:hep-ph/0307382 ADSGoogle Scholar
  14. 14.
    X. Ji, Annu. Rev. Nucl. Part. Sci. 54, 413 (2004)ADSGoogle Scholar
  15. 15.
    A.V. Belitsky, A.V. Radyushkin, Phys. Rep. 418, 1 (2005) arXiv:hep-ph/0504030 ADSGoogle Scholar
  16. 16.
    S. Boffi, B. Pasquini, Riv. Nuovo Cimento 30, 387 (2007) arXiv:0711.2625 [hep-ph]Google Scholar
  17. 17.
    X.-D. Ji, Phys. Rev. Lett. 91, 062001 (2003) arXiv:hep-ph/0304037 ADSGoogle Scholar
  18. 18.
    S.J. Brodsky, D.S. Hwang, I. Schmidt, Phys. Lett. B 530, 99 (2002) hep-ph/0201296ADSGoogle Scholar
  19. 19.
    S.J. Brodsky, D.S. Hwang, I. Schmidt, Nucl. Phys. B 642, 344 (2002) hep-ph/0206259Google Scholar
  20. 20.
    J.C. Collins, Phys. Lett. B 536, 43 (2002) hep-ph/0204004ADSGoogle Scholar
  21. 21.
    X. Ji, F. Yuan, Phys. Lett. B 543, 66 (2002) hep-ph/0206057ADSGoogle Scholar
  22. 22.
    A.V. Belitsky, X. Ji, F. Yuan, Nucl. Phys. B 656, 165 (2003) hep-ph/0208038ADSMATHGoogle Scholar
  23. 23.
    D. Boer, P.J. Mulders, F. Pijlman, Nucl. Phys. B 667, 201 (2003) hep-ph/0303034ADSGoogle Scholar
  24. 24.
    Z.-B. Kang, J.-W. Qiu, Phys. Rev. Lett. 103, 172001 (2009) arXiv:0903.3629 [hep-ph]ADSGoogle Scholar
  25. 25.
    S.J. Brodsky, P. Hoyer, N. Marchal, S. Peigne, F. Sannino, Phys. Rev. D 65, 114025 (2002) arXiv:hep-ph/0104291 ADSGoogle Scholar
  26. 26.
    E. Iancu, A. Leonidov, L. McLerran, arXiv:hep-ph/0202270 (2002)
  27. 27.
    E. Iancu, R. Venugopalan, arXiv:hep-ph/0303204 (2003)
  28. 28.
    J. Jalilian-Marian, Y.V. Kovchegov, Prog. Part. Nucl. Phys. 56, 104 (2006) arXiv:hep-ph/0505052 ADSGoogle Scholar
  29. 29.
    C. Marquet, B.-W. Xiao, F. Yuan, Phys. Lett. B 682, 207 (2009) arXiv:0906.1454 [hep-ph]ADSGoogle Scholar
  30. 30.
    F. Gelis, E. Iancu, J. Jalilian-Marian, R. Venugopalan, arXiv:1002.0333 [hep-ph] (2010) and references therein
  31. 31.
    B.-W. Xiao, F. Yuan, Phys. Rev. D 82, 114009 (2010) arXiv:1008.4432 [hep-ph]ADSGoogle Scholar
  32. 32.
    B.-W. Xiao, F. Yuan, Phys. Rev. Lett. 105, 062001 (2010) arXiv:1003.0482 [hep-ph]ADSGoogle Scholar
  33. 33.
    J.C. Collins, D.E. Soper, G.F. Sterman, Adv. Ser. Direct High Energy Phys. 5, 1 (1988) arXiv:hep-ph/0409313 Google Scholar
  34. 34.
    X. Ji, J. Ma, F. Yuan, Phys. Rev. D 71, 034005 (2005) hep-ph/0404183ADSGoogle Scholar
  35. 35.
    X.-D. Ji, J.-P. Ma, F. Yuan, Phys. Lett. B 597, 299 (2004) arXiv:hep-ph/0405085 ADSGoogle Scholar
  36. 36.
    J.C. Collins, A. Metz, Phys. Rev. Lett. 93, 252001 (2004) hep-ph/0408249ADSGoogle Scholar
  37. 37.
    C.J. Bomhof, P.J. Mulders, F. Pijlman, Phys. Lett. B 596, 277 (2004) arXiv:hep-ph/0406099 ADSGoogle Scholar
  38. 38.
    J. Collins, J.-W. Qiu, Phys. Rev. D 75, 114014 (2007) arXiv:0705.2141 [hep-ph]ADSGoogle Scholar
  39. 39.
    W. Vogelsang, F. Yuan, Phys. Rev. D 76, 094013 (2007) arXiv:0708.4398 [hep-ph]ADSGoogle Scholar
  40. 40.
    J. Collins, arXiv:0708.4410 [hep-ph] (2007)
  41. 41.
    T.C. Rogers, P.J. Mulders, Phys. Rev. D 81, 094006 (2010) arXiv:1001.2977 [hep-ph]ADSGoogle Scholar
  42. 42.
    I.O. Cherednikov, N.G. Stefanis, Phys. Rev. D 77, 094001 (2008) arXiv:0710.1955 [hep-ph]ADSGoogle Scholar
  43. 43.
    I.O. Cherednikov, N.G. Stefanis, Nucl. Phys. B 802, 146 (2008) arXiv:0802.2821 [hep-ph]ADSMATHGoogle Scholar
  44. 44.
    I.O. Cherednikov, N.G. Stefanis, Phys. Rev. D 80, 054008 (2009) arXiv:0904.2727 [hep-ph]ADSGoogle Scholar
  45. 45.
    D.W. Sivers, Phys. Rev. D 43, 261 (1991)ADSGoogle Scholar
  46. 46.
    H. Mkrtchyan et al., Phys. Lett. B 665, 20 (2008) arXiv:0709.3020 [hep-ph]ADSGoogle Scholar
  47. 47.
    The CLAS Collaboration (H. Avakian et al.), Phys. Rev. Lett. 105, 262002 (2010) arXiv:1003.4549 [hep-ex]Google Scholar
  48. 48.
    Z. Lu, B.-Q. Ma, Nucl. Phys. A 741, 200 (2004) arXiv:hep-ph/0406171 ADSGoogle Scholar
  49. 49.
    M. Anselmino, A. Efremov, A. Kotzinian, B. Parsamyan, Phys. Rev. D 74, 074015 (2006) hep-ph/0608048ADSGoogle Scholar
  50. 50.
    B. Pasquini, S. Cazzaniga, S. Boffi, Phys. Rev. D 78, 034025 (2008) arXiv:0806.2298 [hep-ph]ADSGoogle Scholar
  51. 51.
    C. Bourrely, F. Buccella, J. Soffer, arXiv:1008.5322 [hep-ph] (2010)
  52. 52.
    P. Hagler, B.U. Musch, J.W. Negele, A. Schafer, EPL 88, 61001 (2009) arXiv:0908.1283 [hep-lat]ADSGoogle Scholar
  53. 53.
    B.U. Musch, P. Hagler, J.W. Negele, A. Schafer, arXiv:1011.1213 [hep-lat] (2010)
  54. 54.
    M. Anselmino et al., Phys. Rev. D 71, 074006 (2005) arXiv:hep-ph/0501196 ADSGoogle Scholar
  55. 55.
    J.C. Collins et al., Phys. Rev. D 73, 094023 (2006) arXiv:hep-ph/0511272 ADSGoogle Scholar
  56. 56.
    W. Vogelsang, F. Yuan, Phys. Rev. D 72, 054028 (2005) hep-ph/0507266ADSGoogle Scholar
  57. 57.
    M. Anselmino et al., Eur. Phys. J. A 39, 89 (2009) arXiv:0805.2677 [hep-ph]ADSGoogle Scholar
  58. 58.
    HERMES Collaboration (A. Airapetian et al.), Phys. Rev. Lett. 103, 152002 (2009) arXiv:0906.3918 [hep-ex]Google Scholar
  59. 59.
    The COMPASS Collaboration (M.G. Alekseev et al.), Phys. Lett. B 692, 240 (2010) arXiv:1005.5609 [hep-ex]ADSGoogle Scholar
  60. 60.
    M. Anselmino, hep-ph/0701006 (2007)Google Scholar
  61. 61.
    A.V. Efremov, K. Goeke, P. Schweitzer, Phys. Rev. D 73, 094025 (2006) arXiv:hep-ph/0603054 ADSGoogle Scholar
  62. 62.
    M. Anselmino et al., Nucl. Phys. Proc. Suppl. 191, 98 (2009) arXiv:0812.4366 [hep-ph]ADSGoogle Scholar
  63. 63.
    The COMPASS Collaboration (M. Alekseev), COMPASS-II proposal 2010 SPSC-2010-014/P-340 (2010)Google Scholar
  64. 64.
    J.C. Collins, Nucl. Phys. B 396, 161 (1993) hep-ph/9208213ADSGoogle Scholar
  65. 65.
    Belle Collaboration (K. Abe et al.), Phys. Rev. Lett. 96, 232002 (2006) hep-ex/0507063Google Scholar
  66. 66.
    HERMES Collaboration (A. Airapetian et al.), Phys. Rev. Lett. 94, 012002 (2005) hep-ex/0408013Google Scholar
  67. 67.
    HERMES Collaboration (A. Airapetian et al.), Phys. Lett. B 693, 11 (2010) arXiv:1006.4221 [hep-ex]ADSGoogle Scholar
  68. 68.
    COMPASS Collaboration (V.Y. Alexakhin et al.), Phys. Rev. Lett. 94, 202002 (2005) hep-ex/0503002Google Scholar
  69. 69.
    COMPASS Collaboration (M. Alekseev et al.), Phys. Lett. B 673, 127 (2009) arXiv:0802.2160 [hep-ex]ADSGoogle Scholar
  70. 70.
    J.-W. Qiu, G.F. Sterman, Nucl. Phys. B 378, 52 (1992)ADSGoogle Scholar
  71. 71.
    J.-W. Qiu, G.F. Sterman, Phys. Rev. Lett. 67, 2264 (1991)ADSGoogle Scholar
  72. 72.
    J.-W. Qiu, G.F. Sterman, Phys. Rev. D 59, 014004 (1999) arXiv:hep-ph/9806356 ADSGoogle Scholar
  73. 73.
    A.V. Efremov, O.V. Teryaev, Sov. J. Nucl. Phys. 36, 140 (1982)Google Scholar
  74. 74.
    A.V. Efremov, O.V. Teryaev, Phys. Lett. B 150, 383 (1985)ADSGoogle Scholar
  75. 75.
    C. Kouvaris, J.-W. Qiu, W. Vogelsang, F. Yuan, Phys. Rev. D 74, 114013 (2006) arXiv:hep-ph/0609238 ADSGoogle Scholar
  76. 76.
    HERMES Collaboration (A. Airapetian et al.), Phys. Rev. Lett. 84, 4047 (2000) hep-ex/9910062Google Scholar
  77. 77.
    HERMES Collaboration (A. Airapetian et al.), Phys. Lett. B 648, 164 (2007) arXiv:hep-ex/0612059 ADSGoogle Scholar
  78. 78.
    HERMES Collaboration (F. Giordano, R. Lamb), AIP Conf. Proc. 1149, 423 (2009) arXiv:0901.2438 [hep-ex]Google Scholar
  79. 79.
    COMPASS Collaboration (W. Kafer), in Transversity 2008 Proceedings, arXiv:0808.0114 [hep-ex] (2008)
  80. 80.
    CLAS Collaboration (H. Avakian et al.), Phys. Rev. D 69, 112004 (2004) hep-ex/0301005Google Scholar
  81. 81.
    X. Ji, J.-W. Qiu, W. Vogelsang, F. Yuan, Phys. Rev. Lett. 97, 082002 (2006) arXiv:hep-ph/0602239 ADSGoogle Scholar
  82. 82.
    X. Ji, J.-W. Qiu, W. Vogelsang, F. Yuan, Phys. Rev. D 73, 094017 (2006) hep-ph/0604023ADSGoogle Scholar
  83. 83.
    X. Ji, J.-W. Qiu, W. Vogelsang, F. Yuan, Phys. Lett. B 638, 178 (2006) arXiv:hep-ph/0604128 ADSGoogle Scholar
  84. 84.
    A. Bacchetta, D. Boer, M. Diehl, P.J. Mulders, JHEP 08, 023 (2008) arXiv:0803.0227 [hep-ph]ADSGoogle Scholar
  85. 85.
    Z.-B. Kang, J.-W. Qiu, Phys. Rev. D 79, 016003 (2009) arXiv:0811.3101 [hep-ph]ADSGoogle Scholar
  86. 86.
    J. Zhou, F. Yuan, Z.-T. Liang, Phys. Rev. D 79, 114022 (2009) arXiv:0812.4484 [hep-ph]ADSGoogle Scholar
  87. 87.
    W. Vogelsang, F. Yuan, Phys. Rev. D 79, 094010 (2009) arXiv:0904.0410 [hep-ph]ADSGoogle Scholar
  88. 88.
    V.M. Braun, A.N. Manashov, B. Pirnay, Phys. Rev. D 80, 114002 (2009) arXiv:0909.3410 [hep-ph]ADSGoogle Scholar
  89. 89.
    D. Boer, S.J. Brodsky, P.J. Mulders, C. Pisano, arXiv: 1011.4225 [hep-ph] (2010)Google Scholar
  90. 90.
    M. Anselmino et al., Phys. Rev. D 73, 014020 (2006) arXiv:hep-ph/0509035 ADSGoogle Scholar
  91. 91.
    S. Meissner, A. Metz, K. Goeke, Phys. Rev. D 76, 034002 (2007) arXiv:hep-ph/0703176 ADSGoogle Scholar
  92. 92.
    B.W. Xiao, private communicationGoogle Scholar
  93. 93.
    Z.-B. Kang, J.-W. Qiu, Phys. Rev. D 78, 034005 (2008) arXiv:0806.1970 [hep-ph]ADSGoogle Scholar
  94. 94.
    H. Beppu, Y. Koike, K. Tanaka, S. Yoshida, Phys. Rev. D 82, 054005 (2010) arXiv:1007.2034 [hep-ph]ADSGoogle Scholar
  95. 95.
    P. Schweitzer, T. Teckentrup, A. Metz, Phys. Rev. D 81, 094019 (2010) arXiv:1003.2190 [hep-ph]ADSGoogle Scholar
  96. 96.
    H. Avakian, A.V. Efremov, P. Schweitzer, F. Yuan, Phys. Rev. D 81, 074035 (2010) arXiv:1001.5467 [hep-ph]ADSGoogle Scholar
  97. 97.
    S. Boffi, A.V. Efremov, B. Pasquini, P. Schweitzer, Phys. Rev. D 79, 094012 (2009) arXiv:0903.1271 [hep-ph]ADSGoogle Scholar
  98. 98.
    B. Pasquini, F. Yuan, Phys. Rev. D 81, 114013 (2010) arXiv:1001.5398 [hep-ph]ADSGoogle Scholar
  99. 99.
    B.U. Musch, arXiv:0907.2381 [hep-lat] (2009)
  100. 100.
    QCDSF Collaboration (D. Brommel et al.), Phys. Rev. Lett. 101, 122001 (2008) arXiv:0708.2249 [hep-lat]Google Scholar
  101. 101.
    J.C. Collins, D.E. Soper, Nucl. Phys. B 193, 381 (1981)ADSGoogle Scholar
  102. 102.
    J.C. Collins, D.E. Soper, G.F. Sterman, Nucl. Phys. B 250, 199 (1985)ADSGoogle Scholar
  103. 103.
    A. Idilbi, X.-D. Ji, J.-P. Ma, F. Yuan, Phys. Rev. D 70, 074021 (2004) arXiv:hep-ph/0406302 ADSGoogle Scholar
  104. 104.
    D. Boer, Nucl. Phys. B 603, 195 (2001) arXiv:hep-ph/0102071 ADSGoogle Scholar
  105. 105.
    P.M. Nadolsky, D.R. Stump, C.P. Yuan, Phys. Rev. D 61, 014003 (2000) arXiv:hep-ph/9906280 ADSGoogle Scholar
  106. 106.
    J.-W. Qiu, X.-F. Zhang, Phys. Rev. Lett. 86, 2724 (2001) arXiv:hep-ph/0012058 ADSGoogle Scholar
  107. 107.
    J.-W. Qiu, X.-F. Zhang, Phys. Rev. D 63, 114011 (2001) arXiv:hep-ph/0012348 ADSGoogle Scholar
  108. 108.
    J. She, J. Zhu, B.-Q. Ma, Phys. Rev. D 79, 054008 (2009) arXiv:0902.3718 [hep-ph]ADSGoogle Scholar
  109. 109.
    F. Dominguez, B.-W. Xiao, F. Yuan, arXiv:1009.2141 [hep-ph] (2010)
  110. 110.
    F. Dominguez, C. Marquet, B.-W. Xiao, F. Yuan, arXiv:1101.0715 [hep-ph] (2011)
  111. 111.
    J. Peng, private communication (2010)Google Scholar
  112. 112.
    J. Chen, JLab Experiment E12-10-006 (2010)Google Scholar
  113. 113.
    H. Gao et al., Eur. Phys. J. Plus 126, 2 (2011) arXiv:1009.3803 [hep-ph]Google Scholar
  114. 114.
    H. Avakian, JLab Experiment E12-06-112 (2006)Google Scholar
  115. 115.
    H. Avakian, JLab Experiment E12-07-107 (2007)Google Scholar
  116. 116.
    H. Avakian, JLab Experiment E12-09-008 (2009)Google Scholar
  117. 117.
    H. Avakian, JLab Experiment E12-09-009 (2009)Google Scholar
  118. 118.
    G. Cates, JLab Experiment E12-09-018 (2006)Google Scholar
  119. 119.
    X. Qian, Thesis, Duke University (2010) (unpublished)Google Scholar
  120. 120.
    M. Diehl, S. Sapeta, Eur. Phys. J. C 41, 515 (2005) arXiv:hep-ph/0503023 ADSGoogle Scholar
  121. 121.
    J. Pumplin et al., JHEP 07, 012 (2002) arXiv:hep-ph/0201195 ADSGoogle Scholar
  122. 122.
    J. Binnewies, B.A. Kniehl, G. Kramer, Phys. Rev. D 52, 4947 (1995) arXiv:hep-ph/9503464 ADSGoogle Scholar
  123. 123.
    P. Zavada, Eur. Phys. J. C 52, 121 (2007) arXiv: 0706.2988 [hep-ph]ADSGoogle Scholar
  124. 124.
    A.V. Efremov, P. Schweitzer, O.V. Teryaev, P. Zavada, arXiv:0912.3380 [hep-ph] (2009)
  125. 125.
    A.V. Efremov, P. Schweitzer, O.V. Teryaev, P. Zavada, PoS DIS2010, 253 (2010) arXiv:1008.3827 [hep-ph]Google Scholar
  126. 126.
    R. Jakob, P.J. Mulders, J. Rodrigues, Nucl. Phys. A 626, 937 (1997) hep-ph/9704335ADSGoogle Scholar
  127. 127.
    L.P. Gamberg, G.R. Goldstein, M. Schlegel, Phys. Rev. D 77, 094016 (2008) arXiv:0708.0324 [hep-ph]ADSGoogle Scholar
  128. 128.
    A. Courtoy, F. Fratini, S. Scopetta, V. Vento, Phys. Rev. D 78, 034002 (2008) arXiv:0801.4347 [hep-ph]ADSGoogle Scholar
  129. 129.
    A. Courtoy, S. Scopetta, V. Vento, Phys. Rev. D 79, 074001 (2009) arXiv:0811.1191 [hep-ph]ADSGoogle Scholar
  130. 130.
    A. Courtoy, S. Scopetta, V. Vento, Phys. Rev. D 80, 074032 (2009) arXiv:0909.1404 [hep-ph]ADSGoogle Scholar
  131. 131.
    H. Avakian, A.V. Efremov, P. Schweitzer, F. Yuan, Phys. Rev. D 78, 114024 (2008) arXiv:0805.3355 [hep-ph]ADSGoogle Scholar
  132. 132.
    A. Bacchetta, F. Conti, M. Radici, Phys. Rev. D 78, 074010 (2008) arXiv:0807.0323 [hep-ph]ADSGoogle Scholar
  133. 133.
    A. Bacchetta, M. Radici, F. Conti, M. Guagnelli, Eur. Phys. J. A 45, 373 (2010) arXiv:1003.1328 [hep-ph]ADSGoogle Scholar
  134. 134.
    J.R. Ellis, D.S. Hwang, A. Kotzinian, Phys. Rev. D 80, 074033 (2009) arXiv:0808.1567 [hep-ph]ADSGoogle Scholar
  135. 135.
    M. Anselmino, M. Boglione, A. Prokudin, C. Turk, Eur. Phys. J. A 31, 373 (2007) arXiv:hep-ph/0606286 ADSGoogle Scholar
  136. 136.
    H. Avakian, private communicationGoogle Scholar
  137. 137.
    E. Aschenauer, private communicationGoogle Scholar
  138. 138.
    M. Gluck, E. Reya, M. Stratmann, W. Vogelsang, Phys. Rev. D 63, 094005 (2001) arXiv:hep-ph/0011215 ADSGoogle Scholar
  139. 139.
    D. de Florian, R. Sassot, M. Stratmann, Phys. Rev. D 75, 114010 (2007) arXiv:hep-ph/0703242 ADSGoogle Scholar
  140. 140.
    Y. Huang, J. She, B.-Q. Ma, Phys. Rev. D 76, 034004 (2007) arXiv:0706.2796 [hep-ph]ADSGoogle Scholar
  141. 141.
    M. Anselmino, in preparation (2011)Google Scholar
  142. 142.
    A.D. Martin, R.G. Roberts, W.J. Stirling, R.S. Thorne, Phys. Lett. B 604, 61 (2004) arXiv:hep-ph/0410230 ADSGoogle Scholar
  143. 143.
    S. Kretzer, E. Leader, E. Christova, Eur. Phys. J. C 22, 269 (2001) hep-ph/0108055ADSGoogle Scholar
  144. 144.
    M. Anselmino, arXiv:0807.0173 [hep-ph]
  145. 145.
    H. Avakian, JLab Experiment E12-06-015 (2008)Google Scholar
  146. 146.
    H. Avakian, JLab Experiment E12-07-015 (2008)Google Scholar
  147. 147.
    J. Zhou, F. Yuan, Z.-T. Liang, Phys. Rev. D 81, 054008 (2010) arXiv:0909.2238 [hep-ph]ADSGoogle Scholar
  148. 148.
  149. 149.
    Particle Data Group (K. Nakamura et al.), J. Phys. G 37, 075021 (2010)ADSGoogle Scholar
  150. 150.
    G.A. Schuler, T. Sjostrand, Phys. Lett. B 300, 169 (1993)ADSGoogle Scholar
  151. 151.
    R. Ent, private communicationGoogle Scholar
  152. 152.
    Z.B. Kang, private communicationGoogle Scholar

Copyright information

© The Author(s) 2011

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • M. Anselmino
    • 1
  • H. Avakian
    • 2
  • D. Boer
    • 3
  • F. Bradamante
    • 4
  • M. Burkardt
    • 5
  • J. P. Chen
    • 2
  • E. Cisbani
    • 6
  • M. Contalbrigo
    • 7
  • D. Crabb
    • 8
  • D. Dutta
    • 9
  • L. Gamberg
    • 10
  • H. Gao
    • 11
  • D. Hasch
    • 12
  • J. Huang
    • 13
  • M. Huang
    • 11
  • Z. Kang
    • 14
  • C. Keppel
    • 15
  • G. Laskaris
    • 11
  • Z. -T. Liang
    • 16
  • M. X. Liu
    • 17
  • N. Makins
    • 18
  • R. D. Mckeown
    • 19
  • A. Metz
    • 20
  • Z. -E. Meziani
    • 20
  • B. Musch
    • 2
  • J. -C. Peng
    • 18
  • A. Prokudin
    • 2
  • X. Qian
    • 19
  • Y. Qiang
    • 2
  • J. W. Qiu
    • 21
  • P. Rossi
    • 12
  • P. Schweitzer
    • 22
  • J. Soffer
    • 20
  • V. Sulkosky
    • 2
  • Y. Wang
    • 23
  • B. Xiao
    • 24
  • Q. Ye
    • 11
  • Q. -J. Ye
    • 11
  • F. Yuan
    • 24
  • X. Zhan
    • 25
  • Y. Zhang
    • 2
  • W. Zheng
    • 11
  • J. Zhou
    • 20
  1. 1.Università di Torino and INFN, Sezione di TorinoTorinoItaly
  2. 2.Thomas Jefferson National Accelerator FacilityNewport NewsUSA
  3. 3.KVIUniversity of GroningenAA GroningenThe Netherlands
  4. 4.Dipartimento di FisicaUniversità degli Studi di Trieste, and INFN, Sezione di TriesteTriesteItaly
  5. 5.New Mexico State UniversityLas CrucesUSA
  6. 6.INFN, Sezione Roma 1, Gruppo Sanità and Physics LaboratoryIstituto Superiore di SanitàRomaItaly
  7. 7.INFN, Sezione di Ferrara and Dipartimento di FisicaUniversità di FerraraFerraraItaly
  8. 8.University of VirginiaCharlottesvilleUSA
  9. 9.Mississippi State UniversityStarkevilleUSA
  10. 10.Penn State-BerksReadingUSA
  11. 11.Triangle Universities Nuclear Laboratory and Department of PhysicsDuke UniversityDurhamUSA
  12. 12.INFNLaboratori Nazionali di FrascatiFrascatiItaly
  13. 13.Massachusetts Institute of TechnologyCambridgeUSA
  14. 14.RIKEN BNL Research CenterBrookhaven National LaboratoryUptonUSA
  15. 15.Hampton UniversityHamptonUSA
  16. 16.School of PhysicsShandong UniversityJinan, ShandongChina
  17. 17.Physics DivisionLos Alamos National LaboratoryLos AlamosUSA
  18. 18.University of IllinoisUrbanaUSA
  19. 19.California Institute of TechnologyPasadenaUSA
  20. 20.Temple UniversityPhilidalphiaUSA
  21. 21.Physics DepartmentBrookhaven National LaboratoryUptonUSA
  22. 22.University of ConnecticutStorrsUSA
  23. 23.Tsinghua UniversityBeijingChina
  24. 24.Lawrence Berkeley National LaboratoryBerkeleyUSA
  25. 25.Physics DivisionArgonne National LaboratoryArgonneUSA

Personalised recommendations