Advertisement

The mixing of scalar mesons and the baryon-baryon interaction

  • L. R. DaiEmail author
Regular Article - Theoretical Physics

Abstract.

By introducing the mixing of scalar mesons in the chiral SU(3) quark model, we dynamically investigate the baryon-baryon interaction. The hyperon-nucleon and nucleon-nucleon interactions are studied by solving the resonating group method (RGM) equation in a coupled-channel calculation. In our present work, the experimental lightest pseudoscalar \( \pi\), K,\( \eta\),\( \eta^{{\prime}}_{}\) mesons correspond exactly to the chiral nonet pseudoscalar fields \( \pi\), K,\( \eta\),\( \eta^{{\prime}}_{}\) in the chiral SU(3) quark model. The \( \eta\),\( \eta^{{\prime}}_{}\) mesons are considered as the mixing of singlet and octet mesons, and the mixing angle \( \theta_{{ps}}^{}\) is taken to be -23° . For scalar nonet mesons, we suppose that there exists a correspondence between the experimental lightest scalar f 0(600) , \( \kappa\) , a 0(980) , f 0(980) mesons and the theoretical scalar nonet \( \sigma\) , \( \kappa\) , \( \sigma^{{\prime}}_{}\) , \( \epsilon\) fields in the chiral SU(3) quark model. For scalar mesons, we consider two different mixing cases: one is the ideal mixing and another is the \( \theta_{s}^{}\) = 19° mixing. The masses of the \( \sigma^{{\prime}}_{}\) and \( \epsilon\) mesons are taken to be 980MeV, which are just the masses of the experimental a 0(980) , f 0(980) mesons. The mass of the \( \sigma\) meson is an adjustable parameter and is decided by fitting the binding energy of the deuteron, the masses of 560MeV and 644MeV are obtained for the ideal mixing and the \( \theta_{s}^{}\) = 19° mixing, respectively. We find that, in order to reasonably describe the YN interactions, the mass of the \( \kappa\) meson is near 780MeV for the ideal mixing. However, we must enhance the mass of the \( \kappa\) meson for the \( \theta_{s}^{}\) = 19° mixing, the 1050MeV is favorably used in the present work. The experimental \( \sigma\) and \( \kappa\) scalar mesons are very strange, both have larger widths. Hence, no matter what kind of mixing is considered, all the masses of scalar mesons we used in the present work seem to be consistent with the present PDG information.

Keywords

Quark Model Pseudoscalar Meson Scalar Meson Meson Exchange Scatter Phase Shift 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    M.M. Nagels, T.A. Rijken, J.J. de Swart, Phys. Rev. D 12, 744 (1975)CrossRefADSGoogle Scholar
  2. 2.
    P.M.M. Maessen, T.A. Rijken, J.J. de Swart, Phys. Rev. C 40, 2226 (1989)CrossRefADSGoogle Scholar
  3. 3.
    T.A. Rijken, V.G.J. Stoks, Y. Yamamoto, Phys. Rev. C 59, 21 (1999)CrossRefADSGoogle Scholar
  4. 4.
    B. Holzenkamp, K. Holinde, J. Speth, Nucl. Phys. A 500, 485 (1989)CrossRefADSGoogle Scholar
  5. 5.
    A. Reuber, K. Holinde, J. Speth, Nucl. Phys. A 570, 543 (1994)CrossRefADSGoogle Scholar
  6. 6.
    J. Haidenbauer, Ulf-G. Meißner, Phys. Rev. C 72, 044005 (2005)CrossRefADSGoogle Scholar
  7. 7.
    Y. Fujiwara, C. Nakamoto, Y. Suzuki, Phys. Rev. Lett. 76, 2242 (1996)CrossRefADSGoogle Scholar
  8. 8.
    Y. Fujiwara, C. Nakamoto, Y. Suzuki, Phys. Rev. C 54, 2180 (1996)CrossRefADSGoogle Scholar
  9. 9.
    Y. Fujiwara, Y. Suzuki, C. Nakamoto, Prog. Part. Nucl. Phys. 58, 439 (2007)CrossRefADSGoogle Scholar
  10. 10.
    Z.Y. Zhang, Y.W. Yu, P.N. Shen, L.R. Dai, A. Faessler, U. Straub, Nucl. Phys. A 625, 59 (1997)CrossRefADSGoogle Scholar
  11. 11.
    Z.Y. Zhang, Y.W. Yu, C.R. Ching, T.H. Ho, Z.D. Lu, Phys. Rev. C 61, 065204 (2000)CrossRefADSGoogle Scholar
  12. 12.
    X.Q. Yuan, Z.Y. Zhang, Y.W. Yu, P.N. Shen, Phys. Rev. C 60, 045203 (1999)CrossRefADSGoogle Scholar
  13. 13.
    Q.B. Li, P.N. Shen, Phys. Rev. C 62, 028202 (2000)CrossRefADSGoogle Scholar
  14. 14.
    Q.B. Li, P.N. Shen, Z.Y. Zhang, Y.W. Yu, Nucl. Phys. A 683, 487 (2001)CrossRefADSGoogle Scholar
  15. 15.
    D. Zhang, F. Huang, L.R. Dai, Y.W. Yu, Z.Y. Zhang, Phys. Rev. C 75, 024001 (2007)CrossRefADSGoogle Scholar
  16. 16.
    F. Huang, Z.Y. Zhang, Y.W. Yu, Phys. Rev. C 70, 044004 (2004)CrossRefADSGoogle Scholar
  17. 17.
    F. Huang, Z.Y. Zhang, Phys. Rev. C 70, 064004 (2004)CrossRefADSGoogle Scholar
  18. 18.
    F. Huang, D. Zhang, Z.Y. Zhang, Y.W. Yu, Phys. Rev. C 71, 064001 (2005)CrossRefADSGoogle Scholar
  19. 19.
    F. Huang, Z.Y. Zhang, Y.W. Yu, Phys. Rev. C 73, 025207 (2006)CrossRefADSGoogle Scholar
  20. 20.
    Particle Data Group (C. Amsler et al.), Phys. Lett. B 667, 1 (2008)CrossRefADSGoogle Scholar
  21. 21.
    S. Lemaire, J. Labarsouque, B. Silvestre-Brac, Nucl. Phys. A 714, 265 (2003)CrossRefADSGoogle Scholar
  22. 22.
    A. Martínez Torres, K.P. Khemchandani, E. Oset, Eur. Phys. J. A 36, 211 (2008)CrossRefADSGoogle Scholar
  23. 23.
    J.A. Oller, E. Oset, Nucl. Phys. A 620, 438 (1997)CrossRefADSGoogle Scholar
  24. 24.
    J.A. Oller, E. Oset, J.R. Pelaez, Phys. Rev. D 59, 074001 (1999)CrossRefADSGoogle Scholar
  25. 25.
    J.A. Oller, E. Oset, Phys. Rev. D 60, 074023 (1999)CrossRefADSGoogle Scholar
  26. 26.
    J.A. Oller, Nucl. Phys. A 727, 353 (2003)CrossRefADSGoogle Scholar
  27. 27.
    H. Georgi, Weak Interactions and Modern Particle Theory (The Benjamin/Cummings Publishing Company, CA, 1984)Google Scholar
  28. 28.
    I.T. Obukhovsky, A.M. Kusainov, Phys. Lett. B 238, 142 (1990)CrossRefADSGoogle Scholar
  29. 29.
    A.M. Kusainov, V.G. Neudatchin, I.T. Obukhovsky, Phys. Rev. C 44, 2343 (1991)CrossRefADSGoogle Scholar
  30. 30.
    A. Buchmann, E. Fernandez, K. Yazaki, Phys. Lett. B 269, 35 (1991)CrossRefADSGoogle Scholar
  31. 31.
    E.M. Henley, G.A. Miller, Phys. Lett. B 251, 453 (1991)ADSGoogle Scholar
  32. 32.
    Z.Y. Zhang, A. Faessler, U. Straub, L.Ya. Glozman, Nucl. Phys. A 578, 573 (1994)CrossRefADSGoogle Scholar
  33. 33.
    BES Collaboration (M. Ablikm et al.), Phys. Lett. B 598, 149 (2004)ADSGoogle Scholar
  34. 34.
    BES Collaboration (M. Ablikm et al.), Phys. Lett. B 645, 19 (2007)CrossRefADSGoogle Scholar
  35. 35.
    BES Collaboration (M. Ablikm et al.), Phys. Lett. B 633, 681 (2006)CrossRefADSGoogle Scholar
  36. 36.
    E791 Collaboration (E.M. Aitala et al.), Phys. Rev. Lett. 89, 121801 (2002)CrossRefADSGoogle Scholar
  37. 37.
    U. Straub, Z.Y. Zhang, K. Brauer, A. Faessler, S.B. Kardkikar, G. Lubeck, Nucl. Phys. A 483, 686 (1988)CrossRefADSGoogle Scholar
  38. 38.
    M. Oka, K. Yazaki, Prog. Theor. Phys. 66, 556 (1981)CrossRefADSGoogle Scholar
  39. 39.
    M. Oka, K. Yazaki, Prog. Theor. Phys. 66, 572 (1981)CrossRefADSGoogle Scholar
  40. 40.
    K. Wildermuth, Y.C. Tang, A Unified Theory of the Nucleus (Vieweg, Braunschweig, 1977)Google Scholar
  41. 41.
    M. Kamimura, Suppl. Prog. Theor. Phys. 62, 236 (1977)CrossRefADSGoogle Scholar
  42. 42.
    H. Toki, Z. Phys. A 294, 173 (1980)CrossRefADSGoogle Scholar
  43. 43.
    G. Alexander, U. Karshon, A. Shapira, G. Yekutieli, R. Engelmann, H. Filthuth, W. Lughofer, Phys. Rev. 173, 1452 (1968)CrossRefADSGoogle Scholar
  44. 44.
    B. Sechi-Zorn, B. Kehoe, J. Twitty, R.A. Burnstein, Phys. Rev. 175, 1735 (1968)CrossRefADSGoogle Scholar
  45. 45.
    J.A. Kadyk, G. Alexander, J.H. Chan, P. Gaposchkin, G.H. Trilling, Nucl. Phys. B 27, 13 (1971)CrossRefADSGoogle Scholar
  46. 46.
    M.M. Nagels, T.A. Rijken, J.J. de Swart, Phys. Rev. D 20, 1633 (1979)CrossRefADSGoogle Scholar
  47. 47.
    F. Eisele, H. Filthuth, V. Fohlish, V. Hepp, G. Zech, Phys. Lett. 37, 205 (1971)CrossRefGoogle Scholar
  48. 48.
    R. Engelmann, H. Filthuth, V. Hepp, E. Kluge, Phys. Lett. 21, 587 (1966)CrossRefADSGoogle Scholar
  49. 49.
    R.A. Arndt, I.I. Strukovsky, R.L. Workman, Phys. Rev. C 50, 2731 (1994)CrossRefADSGoogle Scholar
  50. 50.
    O. Dumbrajs et al., Nucl. Phys. B 216, 277 (1983)CrossRefADSGoogle Scholar
  51. 51.
    J.R. Bergervoet et al., Phys. Rev. C 38, 15 (1988)CrossRefADSGoogle Scholar
  52. 52.
    I. Slaus et al., Phys. Rep. 173, 257 (1989)CrossRefADSGoogle Scholar
  53. 53.
    G.A. Miller et al., Phys. Rep. 194, 1 (1990)CrossRefADSGoogle Scholar
  54. 54.
    L.R. Dai, Z.Y. Zhang, Y.W. Yu, P. Wang, Nucl. Phys. A 727, 321 (2003)CrossRefADSGoogle Scholar
  55. 55.
    A. Valcarce, A. Faessler, F. Fernandez, Phys. Lett. B 345, 367 (1995)CrossRefADSGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of PhysicsLiaoning Normal UniversityDalianChina

Personalised recommendations