Advertisement

Decay study of 246Fm at SHIP

  • M. VenhartEmail author
  • F. P. Heßberger
  • D. Ackermann
  • S. Antalic
  • C. Gray-Jones
  • P. T. Greenlees
  • S. Heinz
  • R. -D. Herzberg
  • S. Hofmann
  • S. Ketelhut
  • B. Kindler
  • I. Kojouharov
  • M. Leino
  • B. Lommel
  • R. Mann
  • P. Papadakis
  • D. Rostron
  • D. Rudolph
  • Š. Šáro
  • B. Sulignano
Regular Article - Experimental Physics

Abstract.

The decay chain of 246Fm has been investigated employing the SHIP separator at GSI Darmstadt. The 246Fm nuclei were produced via the 40Ar(208Pb, 2n)246Fm fusion-evaporation reaction. Improved values of the half-life, T 1/2 = 1.54(4) s, and of the spontaneous fission branching ratio, b SF = 0.068(6) , of 246Fm were obtained. The \( \beta^{+}_{}\) /electron capture branching ratio, b EC = 0.39(3) , of 242Cf was deduced. Possible structures of high-K states in 246Fm are discussed within the framework of a model calculation based on the Woods-Saxon potential.

Keywords

Electron Capture Isomeric State Isomeric Ratio Evaporation Residue Electron Capture Decay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    F.P. Heßberger, Eur. Phys. J. D 45, 33 (2007)CrossRefADSGoogle Scholar
  2. 2.
    R.-D. Herzberg, P.T. Greenlees, Prog. Part. Nucl. Phys. 61, 674 (2008)CrossRefADSGoogle Scholar
  3. 3.
    M. Leino, F.P. Heßberger, Annu. Rev. Nucl. Part. Sci. 54, 175 (2004)CrossRefADSGoogle Scholar
  4. 4.
    R.-D. Herzberg et al., Nature (London) 442, 896 (2006)CrossRefADSGoogle Scholar
  5. 5.
    S.K. Tandel et al., Phys. Rev. Lett. 97, 082502 (2006)CrossRefADSGoogle Scholar
  6. 6.
    P. Walker, G. Dracoulis, Nature (London) 399, 35 (1999)CrossRefADSGoogle Scholar
  7. 7.
    S.G. Nilsson et al., Nucl. Phys. A 131, 1 (1969)CrossRefADSGoogle Scholar
  8. 8.
    A. Sobiczewski, Z. Patyk, S. Ćwiok, Phys. Lett. B 224, 1 (1989)CrossRefADSGoogle Scholar
  9. 9.
    S. Ćwiok, S. Hofmann, W. Nazarewicz, Nucl. Phys. A 573, 356 (1994)CrossRefADSGoogle Scholar
  10. 10.
    A. Sobiczewski, I. Muntian, Z. Patyk, Phys. At. Nucl. 64, 1105 (2001)CrossRefGoogle Scholar
  11. 11.
    M. Bender, P. Bonche, T. Duguet, P.-H. Heenen, Nucl. Phys. A 723, 354 (2003)CrossRefADSGoogle Scholar
  12. 12.
    B. Kindler et al., Nucl. Instrum. Methods Phys. Res. A 561, 107 (2006)CrossRefADSGoogle Scholar
  13. 13.
    G. Münzenberg, Nucl. Instrum. Methods 161, 65 (1979)CrossRefADSGoogle Scholar
  14. 14.
    S. Hofmann et al., Z. Phys. A 350, 277 (1995)CrossRefADSGoogle Scholar
  15. 15.
    S. Sáro et al., Nucl. Instrum. Methods Phys. Res. A 381, 520 (1996)CrossRefADSGoogle Scholar
  16. 16.
    A. Artna-Cohen, Nucl. Data Sheets 84, 901 (1998)CrossRefADSGoogle Scholar
  17. 17.
    M. Leino, S. Yashita, A. Ghiorso, Phys. Rev. C 24, 2370 (1986)CrossRefADSGoogle Scholar
  18. 18.
    S. Antalic, PhD Thesis, Comenius University Bratislava (2005)Google Scholar
  19. 19.
    K. Takahashi, M. Yamada, T. Kondoh, At. Data Nucl. Data Tables 12, 101 (1973)CrossRefADSGoogle Scholar
  20. 20.
    Yu.A. Lazarev et al., Nucl. Phys. A 588, 501 (1995)CrossRefADSGoogle Scholar
  21. 21.
    Y.A. Akovali, Nucl. Data Sheets 96, 177 (2002)CrossRefADSGoogle Scholar
  22. 22.
    D. Peterson et al., Phys. Rev. C 74, 014316 (2006)CrossRefADSGoogle Scholar
  23. 23.
    B. Sulignano et al., Eur. Phys. J. A 33, 327 (2007)CrossRefADSGoogle Scholar
  24. 24.
    F.P. Heßberger et al., Eur. Phys. J. 43, 55 (2010)CrossRefADSGoogle Scholar
  25. 25.
    P.T. Greenlees et al., Phys. Rev. C 78, 021303(R) (2008)CrossRefADSGoogle Scholar
  26. 26.
    S. Antalic et al., Eur. Phys. J. A 38, 219 (2008)CrossRefADSGoogle Scholar
  27. 27.
    H.B. Jeppesen et al., Phys. Rev. C 79, 031303(R) (2009)CrossRefADSGoogle Scholar
  28. 28.
    G.D. Jones, Nucl. Instrum. Methods Phys. Res. A 488, 471 (2002)CrossRefADSGoogle Scholar
  29. 29.
    S. Ćwiok, J. Dudek, W. Nazarewicz, J. Skalski, T. Werner, Comput. Phys. Commun. 46, 379 (1987)CrossRefADSGoogle Scholar
  30. 30.
    W. Nazarewicz, J. Dudek, R. Bengtsson, T. Bengtsson, I. Ragnarsson, Nucl. Phys. A 435, 397 (1985)CrossRefADSGoogle Scholar
  31. 31.
    C.J. Gallagher, Phys. Rev. 126, 1525 (1962)CrossRefADSGoogle Scholar
  32. 32.
    J.P. Möller, K.-L. Kratz, At. Data Nucl. Data Tables 66, 131 (1997)CrossRefADSGoogle Scholar
  33. 33.
    J.-P. Delaroche, M. Giroda, H. Goutte, J. Libert, Nucl. Phys. A 771, 103 (2006)CrossRefADSGoogle Scholar
  34. 34.
    K.E.G. Löbner, Phys. Lett. B 26, 369 (1968)CrossRefADSGoogle Scholar
  35. 35.
    T. Kibédi et al., Nucl. Instrum. Methods Phys. Res. A 589, 202 (2008)CrossRefADSGoogle Scholar
  36. 36.
    J. Piot, in preparationGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • M. Venhart
    • 1
    • 2
    Email author
  • F. P. Heßberger
    • 3
  • D. Ackermann
    • 3
  • S. Antalic
    • 1
  • C. Gray-Jones
    • 4
  • P. T. Greenlees
    • 5
  • S. Heinz
    • 3
  • R. -D. Herzberg
    • 4
  • S. Hofmann
    • 3
    • 6
  • S. Ketelhut
    • 5
  • B. Kindler
    • 3
  • I. Kojouharov
    • 3
  • M. Leino
    • 5
  • B. Lommel
    • 3
  • R. Mann
    • 3
  • P. Papadakis
    • 4
  • D. Rostron
    • 6
  • D. Rudolph
    • 7
  • Š. Šáro
    • 1
  • B. Sulignano
    • 8
  1. 1.Department of Nuclear Physics and BiophysicsComenius UniversityBratislavaSlovakia
  2. 2.Institute of PhysicsSlovak Academy of SciencesBratislavaSlovakia
  3. 3.GSI Helmholtzzentrum für Schwerionenforschung GmbHDarmstadtGermany
  4. 4.Department of PhysicsUniversity of LiverpoolLiverpoolUK
  5. 5.Department of PhysicsUniversity of JyväskyläJyväskyläFinland
  6. 6.Institut für KernphysikGoethe-UniversitätFrankfurt am MainGermany
  7. 7.Department of PhysicsLund UniversityLundSweden
  8. 8.DAPNIA/SPhNCEA SaclayGif/Yvette CedexFrance

Personalised recommendations