Photoproduction of \( \eta{^\prime}\) -mesons off the deuteron

  • The CBELSA/TAPS Collaboration
  • I. Jaegle
  • T. Mertens
  • A. Fix
  • F. Huang
  • K. Nakayama
  • L. Tiator
  • A. V. Anisovich
  • J. C. S. Bacelar
  • B. Bantes
  • O. Bartholomy
  • D. E. Bayadilov
  • R. Beck
  • Y. A. Beloglazov
  • R. Castelijns
  • V. Crede
  • H. Dutz
  • D. Elsner
  • R. Ewald
  • F. Frommberger
  • C. Funke
  • R. Gregor
  • A. B. Gridnev
  • E. Gutz
  • W. Hillert
  • S. Höffgen
  • J. Junkersfeld
  • H. Kalinowsky
  • S. Kammer
  • V. Kleber
  • Frank Klein
  • Friedrich Klein
  • E. Klempt
  • M. Kotulla
  • B. Krusche
  • M. Lang
  • H. Löhner
  • I. V. Lopatin
  • S. Lugert
  • D. Menze
  • J. G. Messchendorp
  • V. Metag
  • V. A. Nikonov
  • M. Nanova
  • D. V. Novinski
  • R. Novotny
  • M. Ostrick
  • L. M. Pant
  • H. van Pee
  • M. Pfeiffer
  • A. Roy
  • A. V. Sarantsev
  • S. Schadmand
  • C. Schmidt
  • H. Schmieden
  • B. Schoch
  • S. V. Shende
  • V. Sokhoyan
  • A. Süle
  • V. V. Sumachev
  • T. Szczepanek
  • U. Thoma
  • D. Trnka
  • R. Varma
  • D. Walther
  • C. Wendel
Open Access
Regular Article - Experimental Physics

Abstract.

Quasi-free photoproduction of \( \eta{^\prime}\) -mesons off nucleons bound in the deuteron has been measured with the combined Crystal Barrel - TAPS detector. The experiment was done at a tagged photon beam of the ELSA electron accelerator in Bonn for incident photon energies from the production threshold up to 2.5GeV. The \( \eta{^\prime}\) -mesons have been detected in coincidence with recoil protons and recoil neutrons. The quasi-free proton data are in good agreement with the results for free protons, indicating that nuclear effects have no significant impact. The coincidence with recoil neutrons provides the first data for the \( \gamma\)n\( \rightarrow\)n\( \eta{^\prime}\) reaction. In addition, also first estimates for coherent \( \eta{^\prime}\) -production off the deuteron have been obtained. In agreement with model predictions, the total cross-section for this channel is found to be very small, at most at the level of a few nb. The data are compared to model calculations taking into account contributions from nucleon resonances and t -channel exchanges.

References

  1. 1.
    B. Krusche, S. Schadmand, Prog. Part. Nucl. Phys. 51, 399 (2003)ADSCrossRefGoogle Scholar
  2. 2.
    V.D. Burkert, T.-S. Lee, Int. J. Mod. Phys. E 13, 1035 (2004)ADSCrossRefGoogle Scholar
  3. 3.
    B. Krusche et al., Phys. Rev. Lett. 74, 3736 (1995)ADSCrossRefGoogle Scholar
  4. 4.
    B. Krusche et al., Phys. Lett. B 397, 171 (1997)ADSCrossRefGoogle Scholar
  5. 5.
    J. Ajaka et al., Phys. Rev. Lett. 81, 1797 (1998)ADSCrossRefGoogle Scholar
  6. 6.
    A. Bock et al., Phys. Rev. Lett. 81, 534 (1998)ADSCrossRefGoogle Scholar
  7. 7.
    C.S. Armstrong et al., Phys. Rev. D 60, 052004 (1999)ADSCrossRefGoogle Scholar
  8. 8.
    R. Thompson et al., Phys. Rev. Lett. 86, 1702 (2001)ADSCrossRefGoogle Scholar
  9. 9.
    F. Renard et al., Phys. Lett. B 528, 215 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    M. Dugger et al., Phys. Rev. Lett. 89, 222002 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    V. Crede et al., Phys. Rev. Lett. 94, 012004 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    T. Nakabayashi et al., Phys. Rev. C 74, 035202 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    O. Bartholomy et al., Eur. Phys. J. A 33, 133 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    D. Elsner et al., Eur. Phys. J. A 33, 147 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    H. Denizli et al., Phys. Rev. C 76, 015204 (2007)ADSCrossRefGoogle Scholar
  16. 16.
    V. Crede et al., Phys. Rev. C 80, 055202 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    M. Williams et al., Phys. Rev. C 80, 045213 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    M. Sumihama et al., Phys. Rev. C 80, 052201(R) (2009)ADSCrossRefGoogle Scholar
  19. 19.
    E.F. McNicoll et al., Phys. Rev. C 82, 035208 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    C. Amsler et al., Phys. Lett. B 667, 1 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    J. Ajaka et al., Phys. Rev. Lett. 100, 052003 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    E. Gutz et al., Eur. Phys. J. A 35, 291 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    I. Horn et al., Phys. Rev. Lett. 101, 202002 (2008)ADSCrossRefGoogle Scholar
  24. 24.
    I. Horn et al., Eur. Phys. J. A 38, 173 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    V.L. Kashevarov et al., Eur. Phys. J. A 42, 141 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    E. Gutz et al., Phys. Lett B 687, 11 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    J.F. Zhang et al., Phys. Rev. C 52, 1134 (1995)ADSCrossRefGoogle Scholar
  28. 28.
    R. Plötzke et al., Phys. Lett. B 444, 555 (1998)CrossRefGoogle Scholar
  29. 29.
    W.T. Chiang et al., Phys. Rev. C 68, 045202 (2003)MathSciNetADSCrossRefGoogle Scholar
  30. 30.
    M. Dugger et al., Phys. Rev. Lett. 96, 169905 (2006)ADSCrossRefGoogle Scholar
  31. 31.
    K. Nakayama, H. Haberzettl, Phys. Rev. C 73, 045211 (2006)ADSCrossRefGoogle Scholar
  32. 32.
    S. Capstick, W. Roberts, Phys. Rev. D 49, 4570 (1994)ADSCrossRefGoogle Scholar
  33. 33.
    B. Krusche et al., Phys. Lett. B 358, 40 (1995)ADSCrossRefGoogle Scholar
  34. 34.
    J. Weiss et al., Eur. Phys. J. A 16, 275 (2003)ADSCrossRefGoogle Scholar
  35. 35.
    I. Jaegle et al., Phys. Rev. Lett. 100, 252002 (2008)ADSCrossRefGoogle Scholar
  36. 36.
    V. Kuznetsov et al., Phys. Lett. B 647, 23 (2007)ADSCrossRefGoogle Scholar
  37. 37.
    F. Miyahara et al., Prog. Theor. Phys. Suppl. 168, 90 (2007)ADSCrossRefGoogle Scholar
  38. 38.
    D. Husman, W.J. Schwille, Phys. Bl. 44, 40 (1988)Google Scholar
  39. 39.
    W. Hillert, Eur. Phys. J. A 28, 139 (2006)ADSCrossRefGoogle Scholar
  40. 40.
    T. Mertens et al., Eur. Phys. J. A 38, 195 (2008)MathSciNetADSCrossRefGoogle Scholar
  41. 41.
    D. Elsner et al., Eur. Phys. J. A 39, 373 (2009)ADSCrossRefGoogle Scholar
  42. 42.
    E. Aker et al., Nucl. Instrum. Methods A 321, 69 (1992)ADSCrossRefGoogle Scholar
  43. 43.
    R. Novotny, IEEE Trans. Nucl. Sci. 38, 379 (1991)ADSCrossRefGoogle Scholar
  44. 44.
    A.R. Gabler et al., Nucl. Instrum. Methods A 346, 168 (1994)ADSCrossRefGoogle Scholar
  45. 45.
    G. Suft et al., Nucl. Instrum. Methods A 538, 416 (2005)ADSCrossRefGoogle Scholar
  46. 46.
    F. Bloch et al., Eur. Phys. J. A 32, 219 (2007)ADSCrossRefGoogle Scholar
  47. 47.
    R. Brun, GEANT, Cern/DD/ee/84-1 (1986)Google Scholar
  48. 48.
    C. Zeitnitz, The GEANT-CALOR Interface User’s Guide (2001) http://www.staff.uni-mainz.de/zeitnitz/Gcalor/gcalor.html
  49. 49.
    M. Lacombe et al., Phys. Lett. B 101, 139 (1981)ADSCrossRefGoogle Scholar
  50. 50.
    V. Hejny et al., Eur. Phys. J. A 6, 83 (1999)ADSGoogle Scholar
  51. 51.
    E. Schäfer, PhD Thesis, University of Mainz (1993) unpublishedGoogle Scholar
  52. 52.
    K. Nakayama, H. Haberzettl, Phys. Rev. C 69, 065212 (2004)ADSCrossRefGoogle Scholar
  53. 53.
    R. Machleidt, Adv. Nucl. Phys. 19, 189 (1989)Google Scholar
  54. 54.
    R. Machleidt, K. Holinde, Ch. Elster, Phys. Rep. 149, 1 (1987)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2011

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • The CBELSA/TAPS Collaboration
  • I. Jaegle
    • 1
  • T. Mertens
    • 1
  • A. Fix
    • 8
  • F. Huang
    • 9
  • K. Nakayama
    • 9
  • L. Tiator
    • 10
  • A. V. Anisovich
    • 2
    • 3
  • J. C. S. Bacelar
    • 4
  • B. Bantes
    • 5
  • O. Bartholomy
    • 2
  • D. E. Bayadilov
    • 2
    • 3
  • R. Beck
    • 2
  • Y. A. Beloglazov
    • 3
  • R. Castelijns
    • 4
  • V. Crede
    • 2
    • 6
  • H. Dutz
    • 5
  • D. Elsner
    • 5
  • R. Ewald
    • 5
  • F. Frommberger
    • 5
  • C. Funke
    • 2
  • R. Gregor
    • 7
  • A. B. Gridnev
    • 3
  • E. Gutz
    • 2
  • W. Hillert
    • 5
  • S. Höffgen
    • 5
  • J. Junkersfeld
    • 2
  • H. Kalinowsky
    • 2
  • S. Kammer
    • 5
  • V. Kleber
    • 5
  • Frank Klein
    • 5
  • Friedrich Klein
    • 5
  • E. Klempt
    • 2
  • M. Kotulla
    • 1
    • 7
  • B. Krusche
    • 1
  • M. Lang
    • 2
  • H. Löhner
    • 4
  • I. V. Lopatin
    • 3
  • S. Lugert
    • 7
  • D. Menze
    • 5
  • J. G. Messchendorp
    • 4
  • V. Metag
    • 7
  • V. A. Nikonov
    • 2
    • 3
  • M. Nanova
    • 7
  • D. V. Novinski
    • 2
    • 3
  • R. Novotny
    • 7
  • M. Ostrick
    • 5
  • L. M. Pant
    • 7
  • H. van Pee
    • 2
    • 7
  • M. Pfeiffer
    • 7
  • A. Roy
    • 7
  • A. V. Sarantsev
    • 2
    • 3
  • S. Schadmand
    • 7
  • C. Schmidt
    • 2
  • H. Schmieden
    • 5
  • B. Schoch
    • 5
  • S. V. Shende
    • 4
  • V. Sokhoyan
    • 2
  • A. Süle
    • 5
  • V. V. Sumachev
    • 3
  • T. Szczepanek
    • 2
  • U. Thoma
    • 2
    • 7
  • D. Trnka
    • 7
  • R. Varma
    • 7
  • D. Walther
    • 5
  • C. Wendel
    • 2
  1. 1.Department PhysikUniversität BaselBaselSwitzerland
  2. 2.Helmholtz-Institut für Strahlen- und Kernphysik der Universität BonnBonnGermany
  3. 3.Petersburg Nuclear Physics InstituteGatchinaRussia
  4. 4.KVIUniversity of GroningenGroningenThe Netherlands
  5. 5.Physikalisches Institut der Universität BonnBonnGermany
  6. 6.Department of PhysicsFlorida State UniversityTallahasseeUSA
  7. 7.II. Physikalisches InstitutUniversität GiessenGiessenGermany
  8. 8.Laboratory of Mathematical PhysicsTomsk Polytechnic UniversityTomskRussia
  9. 9.Department of Physics and AstronomyUniversity of GeorgiaAthensUSA
  10. 10.Institut für KernphysikUniversität MainzMainzGermany

Personalised recommendations