Advertisement

The European Physical Journal A

, Volume 46, Issue 1, pp 139–155 | Cite as

Estimates for parameters and characteristics of the confining SU(3)-gluonic field in neutral kaons and chiral limit for pseudoscalar nonet

  • Yu. P. Goncharov
Regular Article - Theoretical Physics

Abstract.

The first part of the paper is devoted to applying the confinement mechanism proposed earlier by the author to estimate the possible parameters of the confining SU(3) -gluonic field in neutral kaons. The estimates obtained are consistent with the widths of the electromagnetic decays K 0,\( \bar{{K}}^{0}_{}\) \( \rightarrow\) 2\( \gamma\) too. The corresponding estimates of the gluon concentrations, electric and magnetic colour field strengths are also adduced for the mentioned field at the scales of the mesons under consideration. The second part of the paper takes into account the results obtained previously by the author to estimate the purely gluonic contribution to the masses of all the mesons of the pseudoscalar nonet and also to consider a possible relation with a phenomenological string-like picture of confinement. Finally, the problem of masses in particle physics is shortly discussed within the framework of the approach to the chiral symmetry breaking in quantum chromodynamics (QCD) proposed recently by the author.

Keywords

Cartan Subalgebra Chiral Limit Heavy Quarkonia Gluon Condensate Neutral Kaon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yu.P. Goncharov, Mod. Phys. Lett. A 16, 557 (2001)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Yu.P. Goncharov, Phys. Lett. B 617, 67 (2005)CrossRefADSGoogle Scholar
  3. 3.
    Yu.P. Goncharov, in New Developments in Black Hole Research, edited by P.V. Kreitler (Nova Science Publishers, New York, 2006) Chapt. 3, pp. 67--121, hep-th/0512099Google Scholar
  4. 4.
    Yu.P. Goncharov, Europhys. Lett. 62, 684 (2003)CrossRefADSGoogle Scholar
  5. 5.
    Yu.P. Goncharov, E.A. Choban, Mod. Phys. Lett. A 18, 1661 (2003)MATHCrossRefADSGoogle Scholar
  6. 6.
    Yu.P. Goncharov, A.A. Bytsenko, Phys. Lett. B 602, 86 (2004)CrossRefADSGoogle Scholar
  7. 7.
    Yu.P. Goncharov, Nucl. Phys. A 808, 73 (2008)CrossRefADSGoogle Scholar
  8. 8.
    Yu.P. Goncharov, Phys. Lett. B 641, 237 (2006)CrossRefADSGoogle Scholar
  9. 9.
    Yu.P. Goncharov, Phys. Lett. B 652, 310 (2007)CrossRefADSGoogle Scholar
  10. 10.
    Yu.P. Goncharov, Mod. Phys. Lett. A 22, 2273 (2007)MATHCrossRefADSGoogle Scholar
  11. 11.
    Yu.P. Goncharov, J. Phys. G: Nucl. Part. Phys. 35, 095006 (2008)CrossRefADSGoogle Scholar
  12. 12.
    Yu.P. Goncharov, Nucl. Phys. A 812, 99 (2008)CrossRefADSGoogle Scholar
  13. 13.
    Particle Data Group (C. Amsler, et al.), Phys. Lett. B 667, 1 (2008)CrossRefADSGoogle Scholar
  14. 14.
    K. Wilson, Phys. Rev. D 10, 2445 (1974)CrossRefADSGoogle Scholar
  15. 15.
    M. Bander, Phys. Rep. 75, 205 (1981)CrossRefADSGoogle Scholar
  16. 16.
    D.H. Perkins, Introduction to High Energy Physics (Cambridge University Press, Cambridge, 2000)Google Scholar
  17. 17.
    Yu.P. Goncharov, N.E. Firsova, Int. J. Theor. Phys. 49, 1155 (2010)MATHCrossRefGoogle Scholar
  18. 18.
    L.D. Landau, E.M. Lifshits, Field Theory (Nauka, Moscow, 1988)Google Scholar
  19. 19.
    A. Deur, Nucl. Phys. A 755, 353 (2005)CrossRefADSGoogle Scholar
  20. 20.
    A. Deur, et al., Phys. Lett. B 650, 244 (2007)CrossRefADSGoogle Scholar
  21. 21.
    S.M. Bilenky, Introduction to the Feynman Diagram Technique (Atomizdat, Moscow, 1971)Google Scholar
  22. 22.
    H.M. Pilkuhn, Relativistic Particle Physics (Springer, Berlin, 1979)Google Scholar
  23. 23.
    K. Huang, Quarks, Leptons and Gauge Fields (World-Scientific, Singapore, 1982)Google Scholar
  24. 24.
    F.J. Yndurain, Quantum Chromodynamics. An Introduction to the Theory of Quarks and Gluons (Springer-Verlag, Berlin, 1983)Google Scholar
  25. 25.
    N. Brambilla, CERN Yellow Report, CERN-2005-005 (CERN, Geneva, 2005) hep-ph/0412158Google Scholar
  26. 26.
    E. Farhi, L. Susskind, Phys. Rep. 74, 277 (1981)CrossRefADSGoogle Scholar
  27. 27.
    R.K. Kaul, Rev. Mod. Phys. 55, 449 (1983)CrossRefADSGoogle Scholar
  28. 28.
    T.-P. Cheng, L.-F. Li, Gauge Theory of Elementary Particle Physics (Clarendon Press, Oxford, 1984)Google Scholar
  29. 29.
    J. Hirn, A. Martin, V. Sanz, Phys. Rev. D 78, 075026 (2008)CrossRefADSGoogle Scholar
  30. 30.
    J.-J. Dugne, S. Fredriksson, J. Hansson, Europhys. Lett. 57, 188 (2002)CrossRefADSGoogle Scholar
  31. 31.
    F.E. Close, N.A. Törnqvist, J. Phys. G: Nucl. Part. Phys. 28, R249 (2002)CrossRefADSGoogle Scholar
  32. 32.
    Yu.P. Goncharov, Pis’ma Zh. Exp. Teor. Fiz. 69, 619 (1999)MathSciNetGoogle Scholar
  33. 33.
    Yu.P. Goncharov, Phys. Lett. B 458, 29 (1999)MATHCrossRefMathSciNetADSGoogle Scholar
  34. 34.
    N.Ya. Vilenkin, Special Functions and Theory of Group Representations (Nauka, Moscow, 1991)Google Scholar
  35. 35.
    A. Besse (Editor), Géométrie Riemannian en Dimension 4. Seminaire Arthur Besse (Cedic/Fernand Nathan, Paris, 1981)Google Scholar
  36. 36.
    L.H. Ryder, Quantum Field Theory (Cambridge Univ. Press, Cambridge, 1985)Google Scholar
  37. 37.
    A.L. Besse, Einstein Manifolds (Springer-Verlag, Berlin, 1987).Google Scholar
  38. 38.
    H.B. Lawson jr., M.-L. Michelsohn, Spin Geometry (Princeton University Press, Princeton, 1989)Google Scholar
  39. 39.
    M.M. Postnikov, Riemannian Geometry (Factorial, Moscow, 1998)Google Scholar
  40. 40.
    A.O. Barut, R. Raczka, Theory of Group Representations and Applications (Polish Science, Warszawa, 1977)Google Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Theoretical Group, Experimental Physics DepartmentState Polytechnical UniversitySankt-PetersburgRussia

Personalised recommendations