Advertisement

The European Physical Journal A

, Volume 46, Issue 1, pp 27–44 | Cite as

Production of \( \Lambda\) and \( \Sigma^{0}_{}\) hyperons in proton-proton collisions

  • The COSY-TOF Collaboration
  • M. Abdel-Bary
  • S. Abdel-Samad
  • K-Th. Brinkmann
  • H. Clement
  • J. Dietrich
  • E. Doroshkevich
  • S. Dshemuchadse
  • K. Ehrhardt
  • A. Erhardt
  • W. Eyrich
  • D. Filges
  • A. Filippi
  • H. Freiesleben
  • M. Fritsch
  • W. Gast
  • J. Georgi
  • A. Gillitzer
  • J. Gottwald
  • D. Hesselbarth
  • H. Jäger
  • B. Jakob
  • R. Jäkel
  • L. Karsch
  • K. Kilian
  • H. Koch
  • M. Krapp
  • J. Kreß
  • E. Kuhlmann
  • A. Lehmann
  • S. Marcello
  • S. Marwinski
  • S. Mauro
  • W. Meyer
  • P. Michel
  • K. Möller
  • H. P. Morsch
  • H. Mörtel
  • L. Naumann
  • N. Paul
  • L. Pinna
  • C. Pizzolotto
  • Ch. Plettner
  • S. Reimann
  • M. Richter
  • J. Ritman
  • E. Roderburg
  • A. Schamlott
  • P. Schönmeier
  • W. Schroeder
  • M. Schulte-WissermannEmail author
  • T. Sefzick
  • F. Stinzig
  • M. Steinke
  • G. Y. Sun
  • A. Teufel
  • W. Ullrich
  • G. J. Wagner
  • M. Wagner
  • R. Wenzel
  • A. Wilms
  • P. Wintz
  • S. Wirth
  • P. Wüstner
  • P. Zupranski
Open Access
Regular Article - Experimental Physics

Abstract.

This paper reports results on simultaneous measurements of the reaction channels pp \( \rightarrow\) pK + \( \Lambda\) and pp \( \rightarrow\) pK + \( \Sigma^{0}_{}\) at excess energies of 204, 239, and 284MeV (\( \Lambda\) and 127, 162, and 207MeV (\( \Sigma^{0}_{}\) . Total and differential cross-sections are given for both reactions. It is concluded from the measured total cross-sections that the high-energy limit of the cross-section ratio is almost reached at an excess energy of only about 200MeV. From the differential distributions observed in the overall CMS as well as in the Jackson and helicity frames, a significant contribution of interfering nucleon resonances to the \( \Lambda\) production mechanism is concluded while resonant \( \Sigma^{0}_{}\) production seems to be of lesser importance and takes place only through specific partial waves of the entrance channel. The data also indicate that kaon exchange plays a minor role in the case of \( \Lambda\) but an important role for \( \Sigma^{0}_{}\) production. Thus the peculiar energy dependence of the \( \Lambda\)/\( \Sigma^{0}_{}\) cross-section ratio appears in a new light as its explanation requires more than mere differences between the p \( \Lambda\) and the p \( \Sigma^{0}_{}\) final-state interaction. The data provide a benchmark for theoretical models already available or yet to come.

Keywords

Angular Distribution Excess Energy Entrance Channel Dalitz Plot Beam Momentum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    D. Grzonka, K. Kilian, Nucl. Phys. A 626, 41C (1997)CrossRefADSGoogle Scholar
  2. 2.
    J.T. Balewski et al., Nucl. Phys. A 626, 85C (1997)CrossRefADSGoogle Scholar
  3. 3.
    J.T. Balewski et al., Phys. Lett. B 420, 211 (1998)CrossRefADSGoogle Scholar
  4. 4.
    S. Severin et al., Phys. Rev. Lett. 83, 682 (1999)CrossRefADSGoogle Scholar
  5. 5.
    P. Kowina et al., Eur. Phys. J. A 22, 293 (2004)CrossRefADSGoogle Scholar
  6. 6.
    M. Abd El-Samad et al., Phys. Lett. B 632, 27 (2006)CrossRefADSGoogle Scholar
  7. 7.
    Yu. Valdau et al., Phys. Lett. B 652, 245 (2007) (e-print: nucl-ex/0703044)CrossRefADSGoogle Scholar
  8. 8.
    A. Baldini, Landolt-Börnstein: Numerical Data and Functional Relationships in Science and Tecnology, New Series, Vol. I/12b (Springer, New York, Heidelberg, 1988)Google Scholar
  9. 9.
    J.J. De Swart, Rev. Mod. Phys. 35, 916 (1963)CrossRefMathSciNetADSGoogle Scholar
  10. 10.
    A.A. Sibirtsev et al., Eur. Phys. J. A 29, 363 (2006)CrossRefADSGoogle Scholar
  11. 11.
    R. Shyam, Phys. Rev. C 73, 035211 (2006) (nucl-th/0512007)CrossRefADSGoogle Scholar
  12. 12.
    B.C. Lui, B.S. Zou, Phys. Rev. Lett. 96, 042002 (2006)CrossRefADSGoogle Scholar
  13. 13.
    A. Gasparian et al., Phys. Lett. B 480, 273 (2000)CrossRefADSGoogle Scholar
  14. 14.
    M. Dillig, M. Schott, arXiv: nucl-th/0604059v1
  15. 15.
    R. Frascaria et al., Nuovo Cimento A 102, 561 (1989)CrossRefADSGoogle Scholar
  16. 16.
    R. Siebert, Nucl. Phys. A 567, 819 (1994)CrossRefADSGoogle Scholar
  17. 17.
    J.-M. Laget, Phys. Lett. B 259, 24 (1991)CrossRefADSGoogle Scholar
  18. 18.
    J.-M. Laget, Nucl. Phys. A 691, 11c (2001)CrossRefADSGoogle Scholar
  19. 19.
    S. Capstick, W. Roberts, Phys. Rev. D 58, 074011 (1998)CrossRefADSGoogle Scholar
  20. 20.
    R. Bradford et al., Phys. Rev. C. 73, 035202 (2006)CrossRefADSGoogle Scholar
  21. 21.
    M. Sumihama et al., Phys. Rev. C 73, 035214 (2006)CrossRefADSGoogle Scholar
  22. 22.
    K. Hicks et al., Phys. Rev. C 76, 042201(R) (2007)CrossRefADSGoogle Scholar
  23. 23.
    T. Mart, A. Sulaksono, Phys. Rev. C 74, 055203 (2006)CrossRefADSGoogle Scholar
  24. 24.
    M.Q. Tran et al., Phys. Lett. B 445, 20 (1998)CrossRefADSGoogle Scholar
  25. 25.
    PDG06 (W.-M. Yao), J. Phys. G 33, 1 (2006)Google Scholar
  26. 26.
    A.V. Sarantsev et al., Eur. Phys. J. A 25, 441 (2005)CrossRefADSGoogle Scholar
  27. 27.
    J.W.C. McNabb et al., Phys. Rev. C 69, 042201(R) (2004)CrossRefADSGoogle Scholar
  28. 28.
    K.-H. Glander et al., Eur. Phys. J. A 19, 251 (2004)CrossRefADSGoogle Scholar
  29. 29.
    G. Penner, U. Mosel, Phys. Rev. C 66, 055212 (2002)CrossRefADSGoogle Scholar
  30. 30.
    S. Capstick, C. Roberts, Prog. Part. Nucl. Phys 45, 2541 (2000)CrossRefGoogle Scholar
  31. 31.
    W. Eyrich, Eur. Phys. J. A 31, 435 (2007)CrossRefADSGoogle Scholar
  32. 32.
    W. Schroeder for the COSY-TOF Collaboration, Eur. Phys. J. A 31, 503 (2007)CrossRefADSGoogle Scholar
  33. 33.
    M. Abdel-Bary et al., Phys. Lett. B 649, 252 (2007)CrossRefADSGoogle Scholar
  34. 34.
    M. Dahmen, PhD Thesis, Rheinische Friedrich-Wilhelm-Universität Bonn, Jül-3140, ISSN 0944-2952 (1995)Google Scholar
  35. 35.
    R. Bilger et al., Phys. Lett. B 420, 217 (1998)CrossRefADSGoogle Scholar
  36. 36.
    A. Hassan et al., Nucl. Instrum. Methods Phys. Res. A 425, 403 (1999)CrossRefADSGoogle Scholar
  37. 37.
    M. Dahmen et al., Nucl. Instrum. Methods Phys. Res. A 348, 97 (1994)CrossRefADSGoogle Scholar
  38. 38.
    A. Böhm et al., Nucl. Instrum. Methods Phys. Res. A 443, 238 (2000)CrossRefADSGoogle Scholar
  39. 39.
    M. Schulte-Wissermann, PhD Thesis, TU Dresden (2004)Google Scholar
  40. 40.
    M. Abdel-Bary et al., Phys. Lett. B 662, 14 (2008)ADSGoogle Scholar
  41. 41.
    M. Abdel-Bary et al., Phys. Lett. B 647, 351 (2007)CrossRefADSGoogle Scholar
  42. 42.
    M. Abdel-Bary et al., Eur. Phys. J. A 44, 7 (2010)CrossRefADSGoogle Scholar
  43. 43.
    S. Brand, PhD Thesis, Ruhr-Universität Bochum (1995)Google Scholar
  44. 44.
    U. Zielinsky, PhD Thesis, Ruhr-Universität Bochum (1999)Google Scholar
  45. 45.
    D. Albers et al., Phys. Rev. Lett. 78, 1652 (1997)CrossRefADSGoogle Scholar
  46. 46.
    J. Dietrich, Diploma Thesis, TU Dresden, 2006Google Scholar
  47. 47.
    W.J. Fickinger et al., Phys. Rev. 125, 2082 (1962)CrossRefADSGoogle Scholar
  48. 48.
    G. Fäldt, C. Wilkin, Z. Phys. A 357, 241 (1997)CrossRefADSGoogle Scholar
  49. 49.
    M. Abdel-Bary et al., Phys. Lett. B 688, 142 (2010)CrossRefADSGoogle Scholar
  50. 50.
    E. Byckling, K. Kajantie, Particle Kinematics (John Wiley & Sons, 1973)Google Scholar
  51. 51.
    K. Gottfried, J.D. Jackson, Nuovo Cimento 33, 309 (1964)CrossRefGoogle Scholar
  52. 52.
    T.M. Knasel et al., Phys. Rev. D 11, 1 (1975)CrossRefADSGoogle Scholar
  53. 53.
    R.D. Baker et al., Nucl. Phys. B 141, 29 (1978)CrossRefADSGoogle Scholar
  54. 54.
    F. Balestra et al., Phys. Rev. Lett. 83, 1534 (1999)CrossRefADSGoogle Scholar
  55. 55.
    I.M. Blatt, L.C. Biedenharn, Rev. Mod. Phys. 24, 258 (1952)zbMATHCrossRefADSGoogle Scholar
  56. 56.
    A. A. Sibirtsev et al., Eur. Phys. J. A 27, 269 (2006)CrossRefADSGoogle Scholar
  57. 57.
    T. Yamazaki et al., Phys. Rev. Lett. 104, 13250 (2010)Google Scholar

Copyright information

© The Author(s) 2010

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Open AccessThis is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • The COSY-TOF Collaboration
  • M. Abdel-Bary
    • 3
  • S. Abdel-Samad
    • 3
  • K-Th. Brinkmann
    • 1
    • 8
  • H. Clement
    • 4
  • J. Dietrich
    • 1
  • E. Doroshkevich
    • 4
  • S. Dshemuchadse
    • 1
  • K. Ehrhardt
    • 4
  • A. Erhardt
    • 4
  • W. Eyrich
    • 2
  • D. Filges
    • 3
  • A. Filippi
    • 7
  • H. Freiesleben
    • 1
  • M. Fritsch
    • 2
  • W. Gast
    • 3
  • J. Georgi
    • 2
  • A. Gillitzer
    • 3
  • J. Gottwald
    • 1
  • D. Hesselbarth
    • 3
  • H. Jäger
    • 3
  • B. Jakob
    • 1
  • R. Jäkel
    • 1
  • L. Karsch
    • 1
  • K. Kilian
    • 3
  • H. Koch
    • 9
  • M. Krapp
    • 2
  • J. Kreß
    • 4
  • E. Kuhlmann
    • 1
  • A. Lehmann
    • 2
  • S. Marcello
    • 7
  • S. Marwinski
    • 3
  • S. Mauro
    • 9
  • W. Meyer
    • 9
  • P. Michel
    • 5
  • K. Möller
    • 5
  • H. P. Morsch
    • 3
    • 6
  • H. Mörtel
    • 2
  • L. Naumann
    • 5
  • N. Paul
    • 3
  • L. Pinna
    • 2
  • C. Pizzolotto
    • 2
  • Ch. Plettner
    • 1
  • S. Reimann
    • 1
  • M. Richter
    • 1
  • J. Ritman
    • 3
  • E. Roderburg
    • 3
  • A. Schamlott
    • 5
  • P. Schönmeier
    • 1
  • W. Schroeder
    • 2
    • 3
  • M. Schulte-Wissermann
    • 1
    Email author
  • T. Sefzick
    • 3
  • F. Stinzig
    • 2
  • M. Steinke
    • 9
  • G. Y. Sun
    • 1
  • A. Teufel
    • 2
  • W. Ullrich
    • 1
  • G. J. Wagner
    • 4
  • M. Wagner
    • 2
  • R. Wenzel
    • 1
  • A. Wilms
    • 9
  • P. Wintz
    • 3
  • S. Wirth
    • 2
  • P. Wüstner
    • 3
  • P. Zupranski
    • 6
  1. 1.Institut für Kern- und TeilchenphysikTechnische Universität DresdenDresdenGermany
  2. 2.Physikalisches InstitutUniversität Erlangen-NürnbergErlangenGermany
  3. 3.Institut für KernphysikForschungszentrum JülichJülichGermany
  4. 4.Physikalisches InstitutUniversität TübingenTübingenGermany
  5. 5.Institut für Kern- und HadronenphysikForschungszentrum Dresden-RossendorfDresdenGermany
  6. 6.Soltan Institute for Nuclear StudiesSwierk/OtwockPoland
  7. 7.INFN TorinoTorinoItaly
  8. 8.Helmholtz Institut für Strahlen- und KernphysikRheinische Friedrich-Wilhelm-Universität BonnBonnGermany
  9. 9.Institut für ExperimentalphysikRuhr-Universität BochumBochumGermany

Personalised recommendations