Advertisement

The European Physical Journal A

, Volume 45, Issue 3, pp 401–411 | Cite as

A versatile method for simulating pp \( \rightarrow\) ppe+e- and dp \( \rightarrow\) pne+e-pspec reactions

  • F. Dohrmann
  • I. Fröhlich
  • T. Galatyuk
  • R. Holzmann
  • P. K. Kählitz
  • B. Kämpfer
  • E. Morinière
  • Y. C. Pachmayer
  • B. Ramstein
  • P. Salabura
  • J. Stroth
  • R. Trebacz
  • J. Van de Wiele
  • J. Wüstenfeld
Open Access
Special Article - Tools for Experiment and Theory

Abstract.

We have developed a versatile software package for the simulation of di-electron production in pp and dp collisions at moderate beam kinetic energies (1-2GeV). Particular attention has been paid to incorporate different descriptions of the Dalitz decay \( \Delta\) \( \rightarrow\) Ne + e - via a common interface. In addition, suitable parameterizations for the virtual bremsstrahlung process NN \( \rightarrow\) NNe + e - based on one-boson exchange models have been implemented. Such simulation tools with high flexibility of the framework are important for the interpretation of the di-electron data taken with the HADES spectrometer and demonstrates the wide applicability within the field of nuclear and hadronic physics.

Keywords

Form Factor Transition Form Factor Magnetic Form Factor Dalitz Decay HADES Collaboration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    HADES Collaboration (G. Agakishiev et al.), Eur. Phys. J. A 41, 243 (2009) [arXiv:0902.3478 [nucl-ex]]CrossRefADSGoogle Scholar
  2. 2.
    K. Schmidt, E. Santini, S. Vogel, C. Sturm, M. Bleicher, H. Stöcker, Phys. Rev. C 79, 064908 (2009) [arXiv:nucl-th/0811.4073]CrossRefADSGoogle Scholar
  3. 3.
    E. Santini, M.D. Cozma, A. Faessler, C. Fuchs, M.I. Krivoruchenko, B. Martemyanov, arXiv:nucl-th/0811.2065Google Scholar
  4. 4.
    E. Santini, M.D. Cozma, A. Faessler, C. Fuchs, M.I. Krivoruchenko, B. Martemyanov, Phys. Rev. C 78, 034910 (2008)CrossRefADSGoogle Scholar
  5. 5.
    M. Thomere, C. Hartnack, Gy. Wolf, J. Aichelin, Phys. Rev. C 75, 064902 (2007)CrossRefADSGoogle Scholar
  6. 6.
    H.W. Barz, B. Kämpfer, Gy. Wolf, M. Zetenyi, arXiv:nucl-th/0605036
  7. 7.
    E.L. Bratkovskaya, W. Cassing, Nucl. Phys. A 807, 214 (2008) [arXiv:0712.0635 [nucl-th]]CrossRefADSGoogle Scholar
  8. 8.
    HADES Collaboration (P. Finocchiaro), Technical Design Report for HADES-100 (GSI, 2009) unpublishedGoogle Scholar
  9. 9.
    HADES Collaboration (G. Agakichiev et al.), Phys. Rev. Lett. 98, 052302 (2007) [arXiv:nucl-ex/0608031]CrossRefADSGoogle Scholar
  10. 10.
    HADES Collaboration (G. Agakishiev et al.), Phys. Lett. B 663, 43 (2008) [arXiv:0711.4281 [nucl-ex]]CrossRefADSGoogle Scholar
  11. 11.
    M. Schäfer, H.C. Dönges, A. Engel, U. Mosel, Nucl. Phys. A 575, 429 (1994) [arXiv:nucl-th/9401006]CrossRefADSGoogle Scholar
  12. 12.
    HADES Collaboration (K. Lapidus), arXiv:0904.1128 [nucl-ex]
  13. 13.
    HADES Collaboration (G. Agakishiev et al.), Phys. Lett. B 690, 118 (2010) [arXiv:0910.5875 [nucl-ex]]CrossRefADSGoogle Scholar
  14. 14.
    H.C. Dönges, M. Schäfer, U. Mosel, Phys. Rev. C 51, 950 (1995) [arXiv:nucl-th/9407012]CrossRefGoogle Scholar
  15. 15.
    M. Schäfer, H.C. Dönges, U. Mosel, Phys. Lett. B 342, 13 (1995) [arXiv:nucl-th/9408013]CrossRefADSGoogle Scholar
  16. 16.
    F. de Jong, U. Mosel, Phys. Lett. B 392, 273 (1997) [arXiv:nucl-th/9611051]CrossRefADSGoogle Scholar
  17. 17.
    L.P. Kaptari, B. Kämpfer, Nucl. Phys. A 764, 338 (2006) [arXiv:nucl-th/0504072]CrossRefADSGoogle Scholar
  18. 18.
    L.P. Kaptari, B. Kampfer, Phys. Rev. C 80, 064003 (2009) [arXiv:0903.2466 [nucl-th]]CrossRefADSGoogle Scholar
  19. 19.
    R. Shyam, U. Mosel, Phys. Rev. C 67, 065202 (2003) [arXiv:hep-ph/0303035]CrossRefADSGoogle Scholar
  20. 20.
    R. Shyam, U. Mosel, Phys. Rev. C 79, 035203 (2009) [arXiv:0811.0739 [hep-ph]]CrossRefADSGoogle Scholar
  21. 21.
    C. Gale, J.I. Kapusta, Phys. Rev. C 40, 2397 (1989)CrossRefADSGoogle Scholar
  22. 22.
    K.L. Haglin, Ann. Phys. (N.Y.) 212, 84 (1991)CrossRefADSGoogle Scholar
  23. 23.
    I. Fröhlich, PoS(ACAT)076, arXiv:0708.2382 [nucl-ex]
  24. 24.
  25. 25.
    GEANT3 Detector description and simulation tool, CERN long writeup W5013 (1993)Google Scholar
  26. 26.
    I. Fröhlich et al., J. Phys. Conf. Ser. 219, 032039 (2010) [arXiv:0905.2568 [nucl-ex]]CrossRefADSGoogle Scholar
  27. 27.
    S. Teis, W. Cassing, M. Effenberger, A. Hombach, U. Mosel, Gy. Wolf, Z. Phys. A 356, 421 (1997)CrossRefADSGoogle Scholar
  28. 28.
    Gy. Wolf, G. Batko, W. Cassing, U. Mosel, K. Niita, M. Schäfer, Nucl. Phys. A 517, 615 (1990)CrossRefADSGoogle Scholar
  29. 29.
    J.H. Koch, N. Ohtsuka, E.J. Moniz, Ann. Phys. (N.Y.) 154, 99 (1984)CrossRefADSGoogle Scholar
  30. 30.
    Q. Wan, F. Iachello, Int. J. Mod. Phys. A 20, 1846 (2005)CrossRefADSGoogle Scholar
  31. 31.
    Q. Wan, PhD Thesis, Yale University, New Haven, Connecticut (2007)Google Scholar
  32. 32.
    F. Iachello, private communication (2008)Google Scholar
  33. 33.
    M.I. Krivoruchenko, A. Faessler, Phys. Rev. D 65, 017502 (2002) [nucl-th/0104045]CrossRefADSGoogle Scholar
  34. 34.
    P. Moskal et al., Phys. Rev. C 79, 015208 (2009) [arXiv:0807.0722 [hep-ex]]CrossRefADSGoogle Scholar
  35. 35.
    H. Calen et al., Phys. Rev. C 58, 2667 (1998)CrossRefADSGoogle Scholar
  36. 36.
    H. Calen et al., Phys. Rev. Lett. 79, 2642 (1997)CrossRefADSGoogle Scholar
  37. 37.
    L.G. Landsberg, Phys. Rep. 128, 301 (1985)CrossRefADSGoogle Scholar
  38. 38.
    R. Shyam, private communication (2008)Google Scholar
  39. 39.
    V. Dmitriev, O. Sushkov, C. Gaarde, Nucl. Phys. A 459, 503 (1986)CrossRefADSGoogle Scholar
  40. 40.
    F. Iachello, Yale University, internal report, Dec. 2008Google Scholar
  41. 41.
    A. Sibirtsev, W. Cassing, arXiv:nucl-th/9904046
  42. 42.
    A.I. Titov, B. Kämpfer, B.L. Reznik, Eur. Phys. J. A 7, 543 (2000) [arXiv:nucl-th/0001027]ADSGoogle Scholar
  43. 43.
    P. Benz et al., Nucl. Phys. B 65, 158 (1973)CrossRefADSGoogle Scholar
  44. 44.
    R.V. Reid, Ann. Phys. (N.Y.) 50, 411 (1968)CrossRefADSGoogle Scholar
  45. 45.
    R.B. Wiringa, V.G.J. Stoks, R. Schiavilla, Phys. Rev. C 51, 38 (1995) [arXiv:nucl-th/9408016]CrossRefADSGoogle Scholar
  46. 46.
    A.V. Anisovich, I. Jaegle, E. Klempt, B. Krusche, V.A. Nikonov, A.V. Sarantsev, U. Thoma, Eur. Phys. J. A 41, 13 (2009) [arXiv:0809.3340 [hep-ph]]CrossRefADSGoogle Scholar
  47. 47.
    G. Wolf, G. Batko, W. Cassing, U. Mosel, K. Niita, M. Schaefer, Nucl. Phys. A 517, 615 (1990)CrossRefADSGoogle Scholar
  48. 48.
    H.F. Jones, M.D. Scadron, Ann. Phys. 81, 1 (1973)CrossRefADSGoogle Scholar
  49. 49.
    M. Zetenyi, G. Wolf, Heavy Ion Phys. 17, 27 (2003) [arXiv:nucl-th/0202047]CrossRefGoogle Scholar
  50. 50.
    V. Pascalutsa, M. Vanderhaeghen, S.N. Yang, Phys. Rep. 437, 125 (2007) [arXiv:hep-ph/0609004]CrossRefADSGoogle Scholar
  51. 51.
    F. Iachello, A.D. Jackson, A. Lande, Phys. Lett. B 43, 191 (1973)CrossRefADSGoogle Scholar
  52. 52.
    F. Iachello, Q. Wan, Phys. Rev. C 69, 055204 (2004)CrossRefADSGoogle Scholar

Copyright information

© The Author(s) 2010

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Open AccessThis is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • F. Dohrmann
    • 1
  • I. Fröhlich
    • 2
  • T. Galatyuk
    • 2
  • R. Holzmann
    • 3
  • P. K. Kählitz
    • 1
  • B. Kämpfer
    • 1
  • E. Morinière
    • 4
  • Y. C. Pachmayer
    • 2
  • B. Ramstein
    • 4
  • P. Salabura
    • 3
    • 5
  • J. Stroth
    • 2
    • 3
  • R. Trebacz
    • 5
  • J. Van de Wiele
    • 4
  • J. Wüstenfeld
    • 1
  1. 1.Institut für StrahlenphysikForschungszentrum Dresden-RossendorfDresdenGermany
  2. 2.Institut für KernphysikGoethe-UniversitätFrankfurtGermany
  3. 3.GSI Helmholtzzentrum für Schwerionenforschung GmbHDarmstadtGermany
  4. 4.Institut de Physique Nucléaire d’Orsay, CNRS/IN2P3Orsay CedexFrance
  5. 5.Smoluchowski Institute of PhysicsJagiellonian University of CracowKrakówPoland

Personalised recommendations