Advertisement

The European Physical Journal A

, Volume 45, Issue 2, pp 267–274 | Cite as

Analysis of the \( {\frac{{1}}{{2}}}\) + doubly heavy baryon states with QCD sum rules

  • Zhi-Gang Wang
Regular Article - Theoretical Physics

Abstract.

In this paper, we study the \( {\frac{{1}}{{2}}}\) + doubly heavy baryon states \( \Omega_{{QQ}}^{}\) and \( \Xi_{{QQ}}^{}\) by subtracting the contributions from the corresponding \( {\frac{{1}}{{2}}}\) - doubly heavy baryon states with QCD sum rules, and make reasonable predictions for their masses. Those doubly heavy baryon states may be observed at Tevatron, LHCb and PANDA.

Keywords

Heavy Quark Operator Product Expansion Threshold Parameter Tensor Structure Pole Residue 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Mattson et al., Phys. Rev. Lett. 89, 112001 (2002)CrossRefADSGoogle Scholar
  2. 2.
    A. Ocherashvili et al., Phys. Lett. B 628, 18 (2005)CrossRefADSGoogle Scholar
  3. 3.
    B. Aubert et al., Phys. Rev. D 74, 011103 (2006)CrossRefADSGoogle Scholar
  4. 4.
    R. Chistov et al., Phys. Rev. Lett. 97, 162001 (2006)CrossRefADSGoogle Scholar
  5. 5.
    D. Ebert, R.N. Faustov, V.O. Galkin, A.P. Martynenko, Phys. Rev. D 66, 014008 (2002)CrossRefADSGoogle Scholar
  6. 6.
    A.P. Martynenko, Phys. Lett. B 663, 317 (2008)CrossRefADSGoogle Scholar
  7. 7.
    W. Roberts, M. Pervin, Int. J. Mod. Phys. A 23, 2817 (2008)zbMATHCrossRefADSGoogle Scholar
  8. 8.
    C. Albertus, E. Hernandez, J. Nieves, J.M. Verde-Velasco, Eur. Phys. J. A 32, 183 (2007)CrossRefADSGoogle Scholar
  9. 9.
    J. Vijande, H. Garcilazo, A. Valcarce, F. Fernandez, Phys. Rev. D 70, 054022 (2004)CrossRefADSGoogle Scholar
  10. 10.
    S.S. Gershtein, V.V. Kiselev, A.K. Likhoded, A.I. Onishchenko, Phys. Rev. D 62, 054021 (2000)CrossRefADSGoogle Scholar
  11. 11.
    A. Valcarce, H. Garcilazo, J. Vijande, Eur. Phys. J. A 37, 217 (2008)CrossRefGoogle Scholar
  12. 12.
    V.V. Kiselev, A.K. Likhoded, Phys. Usp. 45, 455 (2002)CrossRefADSGoogle Scholar
  13. 13.
    F. Giannuzzi, Phys. Rev. D 79, 094002 (2009)CrossRefADSGoogle Scholar
  14. 14.
    D.H. He, K. Qian, Y.B. Ding, X.Q. Li, P.N. Shen, Phys. Rev. D 70, 094004 (2004)CrossRefADSGoogle Scholar
  15. 15.
    E. Bagan, M. Chabab, S. Narison, Phys. Lett. B 306, 350 (1992)ADSGoogle Scholar
  16. 16.
    J.R. Zhang, M.Q. Huang, Phys. Rev. D 78, 094007 (2008)CrossRefADSGoogle Scholar
  17. 17.
    D.B. Lichtenberg, R. Roncaglia, E. Predazzi, Phys. Rev. D 53, 6678 (1996)CrossRefADSGoogle Scholar
  18. 18.
    M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, Nucl. Phys. B 147, 385, 448 (1979)Google Scholar
  19. 19.
    L.J. Reinders, H. Rubinstein, S. Yazaki, Phys. Rep. 127, 1 (1985)CrossRefADSGoogle Scholar
  20. 20.
    S. Narison, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 17, 1 (2002)Google Scholar
  21. 21.
    Z.G. Wang, Phys. Lett. B 685, 59 (2010)CrossRefADSGoogle Scholar
  22. 22.
    D. Jido, N. Kodama, M. Oka, Phys. Rev. D 54, 4532 (1996)CrossRefADSGoogle Scholar
  23. 23.
    Y. Chung, H.G. Dosch, M. Kremer, D. Schall, Nucl. Phys. B 197, 55 (1982)CrossRefADSGoogle Scholar
  24. 24.
    E. Bagan, M. Chabab, H.G. Dosch, S. Narison, Phys. Lett. B 301, 243 (1993)CrossRefADSGoogle Scholar
  25. 25.
    Z.G. Wang, Eur. Phys. J. C 54, 231 (2008)CrossRefADSGoogle Scholar
  26. 26.
    Z.G. Wang, Eur. Phys. J. C 61, 321 (2009)CrossRefADSGoogle Scholar
  27. 27.
    Z.G. Wang, Eur. Phys. J. A 44, 105 (2010)CrossRefADSGoogle Scholar
  28. 28.
    Z.G. Wang, arXiv:1001.1652
  29. 29.
    Z.G. Wang, Phys. Rev. D 81, 036002 (2010)CrossRefADSGoogle Scholar
  30. 30.
    B.L. Ioffe, Prog. Part. Nucl. Phys. 56, 232 (2006)CrossRefADSGoogle Scholar
  31. 31.
    P. Colangelo, A. Khodjamirian, hep-ph/0010175Google Scholar
  32. 32.
    C. Amsler et al., Phys. Lett. B 667, 1 (2008)CrossRefADSGoogle Scholar
  33. 33.
    A. Khodjamirian, R. Ruckl, Adv. Ser. Direct. High Energy Phys. 15, 345 (1998)Google Scholar
  34. 34.
    A.A. Ovchinnikov, A.A. Pivovarov, L.R. Surguladze, Int. J. Mod. Phys. A 6, 2025 (1991)CrossRefADSGoogle Scholar
  35. 35.
    B.L. Ioffe, Nucl. Phys. B 188, 317 (1981)CrossRefADSGoogle Scholar
  36. 36.
    B.L. Ioffe, Z. Phys. C 18, 67 (1983)CrossRefADSGoogle Scholar
  37. 37.
    C.H. Chang, C.F. Qiao, J.X. Wang, X.G. Wu, Phys. Rev. D 73, 094022 (2006)CrossRefADSGoogle Scholar
  38. 38.
    C.H. Chang, J.P. Ma, C.F. Qiao, X.G. Wu, J. Phys. G 34, 845 (2007)CrossRefGoogle Scholar
  39. 39.
    C.H. Chang, J.X. Wang, X.G. Wu, Comput. Phys. Commun. 181, 1144 (2010)CrossRefADSGoogle Scholar
  40. 40.
    C.H. Chang, J.X. Wang, X.G. Wu, Comput. Phys. Commun. 177, 467 (2007)CrossRefADSGoogle Scholar
  41. 41.
    S.P. Baranov, Phys. Rev. D 54, 3228 (1996)CrossRefADSGoogle Scholar
  42. 42.
    A.V. Berezhnoy, V.V. Kiselev, A.K. Likhoded, Phys. At. Nucl. 59, 870 (1996)Google Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Zhi-Gang Wang
    • 1
  1. 1.Department of PhysicsNorth China Electric Power UniversityBaodingPRC

Personalised recommendations