Advertisement

The European Physical Journal A

, Volume 45, Issue 2, pp 153–158 | Cite as

Spin-alignment and g-factor measurement of the \(I^{\pi}\) = 12+ isomer in 192Pb produced in the relativistic-energy fragmentation of a 238U beam

  • M. Kmiecik
  • A. Maj
  • J. Gerl
  • G. Neyens
  • L. Atanasova
  • D. L. Balabanski
  • F. Becker
  • P. Bednarczyk
  • G. Benzoni
  • N. Blasi
  • A. Bracco
  • S. Brambilla
  • L. Caceres
  • F. Camera
  • M. Ciemała
  • F. C. L. Crespi
  • S. K. Chamoli
  • S. Chmel
  • J. M. Daugas
  • P. Detistov
  • P. Doornenbal
  • G. Georgiev
  • K. Gladnishki
  • M. Górska
  • H. Grawe
  • J. Grȩbosz
  • M. Hass
  • R. Hoischen
  • G. Ilie
  • M. Ionescu-Bujor
  • J. Jolie
  • I. Kojuharov
  • A. Krasznahorkay
  • R. Kulessa
  • M. Lach
  • S. Lakshmi
  • S. Leoni
  • G. Lo Bianco
  • R. Lozeva
  • K. H. Maier
  • S. Mallion
  • K. Mazurek
  • W. Mȩczyński
  • B. Million
  • D. Montanari
  • S. Myalski
  • C. Petrache
  • M. Pfützner
  • S. Pietri
  • Zs. Podolyák
  • W. Prokopowicz
  • D. Rudolph
  • N. Saito
  • T. R. Saito
  • A. Saltarelli
  • G. S. Simpson
  • J. Styczeń
  • N. Vermeulen
  • E. Werner-Malento
  • O. Wieland
  • H. J. Wollersheim
  • M. Ziȩbliński
Open Access
Regular Article - Experimental Physics

Abstract.

The feasibility of measuring g -factors using the TDPAD method applied to high-energy, heavy fragmentation products is explored. The 2623keV \(\ensuremath I^{\pi}=12^+\) isomer in 192Pb with \( \tau\) = 1.57 μs has been produced using the fragmentation of a 1A GeV 238U beam. The results presented demonstrate for the first time that such heavy nuclei produced in a fragmentation reaction with a relativistic beam are sufficiently well spin-aligned. Moreover, the rather large value of the alignment, 28(10)% of the maximum possible, is preserved during the separation process allowing the determination of magnetic moments. The measured values of the lifetime, \( \tau\) = 1.54(9) μs, and the g -factor, g = - 0.175(20) , agree with the results of previous investigations using fusion-evaporation reactions.

Keywords

Momentum Distribution Heavy Nucleus Time Spectrum Isomeric State Fragmentation Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    G. Georgiev et al., J. Phys. G 28, 2993 (2002)CrossRefADSGoogle Scholar
  2. 2.
    I. Matea et al., Phys. Rev. Lett. 93, 142503 (2004)CrossRefADSGoogle Scholar
  3. 3.
    L. Atanasova et al., Prog. Part. Nucl. Phys. 59, 355 (2007)CrossRefGoogle Scholar
  4. 4.
    G. Ilie et al., Phys. Lett. B 687, 305 (2010)CrossRefADSGoogle Scholar
  5. 5.
    K. Asahi et al., Phys. Rev. C 43, 456 (1991)CrossRefADSGoogle Scholar
  6. 6.
    W.-D. Schmidt-Ott et al., Z. Phys. A 350, 215 (1994)CrossRefADSGoogle Scholar
  7. 7.
    N. Vermeulen et al., Phys. Rev. C 75, 051302(R) (2007)CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    D. Borremans et al., Phys. Rev. C 66, 054601 (2002)CrossRefADSGoogle Scholar
  9. 9.
    D.E. Groh et al., Phys. Rev. C 76, 054608 (2007)CrossRefADSGoogle Scholar
  10. 10.
    P. Seelig et al., Phys. Rev. Lett. 81, 4824 (1998)CrossRefADSGoogle Scholar
  11. 11.
    R. Nordhagen et al., Nucl. Phys. A 142, 577 (1970)CrossRefADSGoogle Scholar
  12. 12.
    Ch. Stenzel et al., Hyperfine Interact. 15/16, 97 (1983)CrossRefADSGoogle Scholar
  13. 13.
    Ch. Stenzel et al., Nucl. Phys. A 411, 248 (1983)CrossRefADSGoogle Scholar
  14. 14.
    H. Geissel et al., Nucl. Instrum. Methods Phys. Res. B 70, 286 (1992)CrossRefADSGoogle Scholar
  15. 15.
    H.J. Wollersheim et al., Nucl. Instrum. Methods Phys. Res. A 537, 637 (2005)CrossRefADSGoogle Scholar
  16. 16.
    R. Lozeva et al., Phys. Rev. C 77, 064313 (2008)CrossRefADSGoogle Scholar
  17. 17.
    D. Bazin et al., Nucl. Instrum. Methods Phys. Res. A 482, 307 (2002)CrossRefADSGoogle Scholar
  18. 18.
    O. Tarasov et al., Nucl. Instrum. Methods Phys. Res. B 266, 4657 (2008)CrossRefADSGoogle Scholar
  19. 19.
    J. Grebosz, Comput. Phys. Commun. 176, 251 (2007)CrossRefADSGoogle Scholar
  20. 20.
    G. Goldring, M. Hass, Treaties on Heavy Ion Science, edited by D. Allan Bromley, Vol. 3 (Plenum, New York, 1985) p. 539Google Scholar
  21. 21.
    M. Ionescu-Bujor et al., Phys. Lett. B 650, 141 (2007)CrossRefADSGoogle Scholar
  22. 22.
    C.M. Baglin, Nucl. Data Sheets 84, 717 (1998)CrossRefADSGoogle Scholar
  23. 23.
    G. Neyens et al., Acta Phys. Pol. B 38, 1237 (2007)ADSGoogle Scholar
  24. 24.
    G. Neyens, Rep. Prog. Phys. 66, 633 (2003)CrossRefADSGoogle Scholar
  25. 25.
    T. Yamazaki, Nucl. Data A 3, 1 (1967)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2010

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Authors and Affiliations

  • M. Kmiecik
    • 1
  • A. Maj
    • 1
  • J. Gerl
    • 2
  • G. Neyens
    • 3
  • L. Atanasova
    • 4
  • D. L. Balabanski
    • 5
    • 6
  • F. Becker
    • 2
  • P. Bednarczyk
    • 1
    • 2
  • G. Benzoni
    • 7
  • N. Blasi
    • 7
  • A. Bracco
    • 7
    • 8
  • S. Brambilla
    • 7
  • L. Caceres
    • 2
  • F. Camera
    • 7
    • 8
  • M. Ciemała
    • 1
  • F. C. L. Crespi
    • 7
    • 8
  • S. K. Chamoli
    • 9
  • S. Chmel
    • 10
  • J. M. Daugas
    • 11
  • P. Detistov
    • 4
  • P. Doornenbal
    • 2
  • G. Georgiev
    • 12
  • K. Gladnishki
    • 4
    • 5
  • M. Górska
    • 2
  • H. Grawe
    • 2
  • J. Grȩbosz
    • 1
  • M. Hass
    • 9
  • R. Hoischen
    • 13
  • G. Ilie
    • 14
    • 15
  • M. Ionescu-Bujor
    • 15
  • J. Jolie
    • 14
  • I. Kojuharov
    • 2
  • A. Krasznahorkay
    • 16
  • R. Kulessa
    • 17
  • M. Lach
    • 1
  • S. Lakshmi
    • 9
  • S. Leoni
    • 7
    • 8
  • G. Lo Bianco
    • 5
  • R. Lozeva
    • 3
    • 4
    • 12
  • K. H. Maier
    • 1
  • S. Mallion
    • 3
  • K. Mazurek
    • 1
  • W. Mȩczyński
    • 1
  • B. Million
    • 7
  • D. Montanari
    • 7
    • 8
  • S. Myalski
    • 1
  • C. Petrache
    • 5
  • M. Pfützner
    • 18
  • S. Pietri
    • 19
  • Zs. Podolyák
    • 19
  • W. Prokopowicz
    • 2
  • D. Rudolph
    • 13
  • N. Saito
    • 2
  • T. R. Saito
    • 2
  • A. Saltarelli
    • 5
  • G. S. Simpson
    • 20
  • J. Styczeń
    • 1
  • N. Vermeulen
    • 3
  • E. Werner-Malento
    • 2
    • 21
  • O. Wieland
    • 7
  • H. J. Wollersheim
    • 2
  • M. Ziȩbliński
    • 1
  1. 1.H. Niewodniczański Institute of Nuclear Physics PANKrakówPoland
  2. 2.GSIDarmstadtGermany
  3. 3.K.U. LeuvenInstituut voor Kern- en StralingsfysicaLeuvenBelgium
  4. 4.Faculty of PhysicsUniversity of Sofia “St. Kl. Ohridski”SofiaBulgaria
  5. 5.Dipartamento di FisicaUniversità degli Studi di Camerino and INFN sez. PerugiaCamerinoItaly
  6. 6.Institute for Nuclear Research and Nuclear EnergyBulgarian Academy of SciencesSofiaBulgaria
  7. 7.INFN Sez. di MilanoMilanoItaly
  8. 8.Università degli Studi di MilanoMilanoItaly
  9. 9.Weizman Institute of ScienceRehovotIsrael
  10. 10.Fraunhofer INTEuskirchenGermany
  11. 11.CEA, DAM, DIFArpajon CedexFrance
  12. 12.CSNSMUniversité Paris-Sud 11, CNRS/IN2P3Orsay-CampusFrance
  13. 13.Department of PhysicsLund UniversityLundSweden
  14. 14.Institut für KernphysikUniversität zu KölnKölnGermany
  15. 15.National Institute for Physics and Nuclear EngineeringBucharestRomania
  16. 16.Institute of Nuclear Research of the Hungarian Academy of Sciences (ATOMKI)DebrecenHungary
  17. 17.Jagiellonian UniversityKrakówPoland
  18. 18.University of WarsawWarsawPoland
  19. 19.Department of PhysicsUniversity of SurreyGuildfordUK
  20. 20.Institut Laue LangevinGrenobleFrance
  21. 21.Institute of Physics PANWarsawPoland

Personalised recommendations