Advertisement

The European Physical Journal A

, Volume 45, Issue 1, pp 111–120 | Cite as

Random matrix structure of nuclear shell model Hamiltonian matrices and comparison with an atomic example

  • Manan Vyas
  • V. K. B. KotaEmail author
Regular Article - Theoretical Physics

Abstract.

We present a comprehensive analysis of the structure of Hamiltonian matrices based on visualization of the matrices in three dimensions as well as in terms of measures for GOE, banded and two-body random matrix ensembles (TBRE). We have considered two nuclear shell model examples, 22Na with \(\ensuremath J^{\pi} T = 2^+0\) and 24Mg with \(\ensuremath J^{\pi} T = 0^+0\) and, for comparison we have also considered the SmI atomic example. It is clearly established that the matrices are neither GOE nor banded. For the TBRE structure we have examined the correlations between diagonal elements and eigenvalues, fluctuations in the basis states variances and structure of the two-body part of the Hamiltonian in the eigenvalue basis. Unlike the atomic example, nuclear examples show that the nuclear shell model Hamiltonians can be well represented by TBRE.

Keywords

Shell Model Random Matrix Diagonal Block Gaussian Form Diagonal Matrix Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.E. Porter, Statistical Theories of Spectra: Fluctuations (Academic Press, New York, 1965)Google Scholar
  2. 2.
    M.L. Mehta, Random Matrices, 3rd ed. (Elsevier B.V., The Netherlands, 2004)Google Scholar
  3. 3.
    F. Haake, Quantum Signatures of Chaos (Springer-Verlag, Heidelberg, 2004)Google Scholar
  4. 4.
    E.P. Wigner, Ann. Math. 62, 548 (1955)CrossRefMathSciNetGoogle Scholar
  5. 5.
    E.P. Wigner, Ann. Math. 65, 203 (1957)CrossRefMathSciNetGoogle Scholar
  6. 6.
    G. Casati, F.M. Izrailev, L. Molinary, Phys. Rev. Lett. 64, 1851 (1990)zbMATHCrossRefMathSciNetADSGoogle Scholar
  7. 7.
    G. Casati, B.V. Chirikov, I. Guarneri, F.M. Izrailev, Phys. Rev. E 48, R1613 (1993)CrossRefADSGoogle Scholar
  8. 8.
    Y.V. Fyodorov, A.D. Mirlin, Phys. Rev. Lett. 67, 2405 (1991)zbMATHCrossRefMathSciNetADSGoogle Scholar
  9. 9.
    Y.V. Fyodorov, A.D. Mirlin, Phys. Rev. Lett. 69, 1093 (1992)CrossRefADSGoogle Scholar
  10. 10.
    J.B. French, S.S.M. Wong, Phys. Lett. B 33, 449 (1970)CrossRefADSGoogle Scholar
  11. 11.
    J.B. French, S.S.M. Wong, Phys. Lett. B 35, 5 (1971)CrossRefADSGoogle Scholar
  12. 12.
    O. Bohigas, J. Flores, Phys. Lett. B 34, 261 (1971)CrossRefADSGoogle Scholar
  13. 13.
    O. Bohigas, J. Flores, Phys. Lett. B 35, 383 (1971)CrossRefADSGoogle Scholar
  14. 14.
    T.A. Brody, J. Flores, J.B. French, P.A. Mello, A. Pandey, S.S.M. Wong, Rev. Mod. Phys. 53, 385 (1981)CrossRefMathSciNetADSGoogle Scholar
  15. 15.
    T. Papenbrock, H.A. Weidenmüller, Rev. Mod. Phys. 79, 997 (2007)CrossRefADSGoogle Scholar
  16. 16.
    K.K. Mon, J.B. French, Ann. Phys. (N.Y.) 95, 90 (1975)CrossRefMathSciNetADSGoogle Scholar
  17. 17.
    V.K.B. Kota, Phys. Rep. 347, 223 (2001)zbMATHCrossRefMathSciNetADSGoogle Scholar
  18. 18.
    V.V. Flambaum, A.A. Gribakina, G.F. Gribakin, I.V. Ponomarev, Physica D 131, 205 (1999)zbMATHCrossRefADSGoogle Scholar
  19. 19.
    J.M.G. Gómez, K. Kar, V.K.B. Kota, J. Retamosa, R. Sahu, Phys. Rev. C 64, 034305 (2001)CrossRefADSGoogle Scholar
  20. 20.
    J.M.G. Gómez, K. Kar, V.K.B. Kota, R.A. Molina, J. Retamosa, Phys. Rev. C 69, 057302 (2004)CrossRefADSGoogle Scholar
  21. 21.
    A. Gervois, Phys. Lett. B 26, 413 (1968)CrossRefADSGoogle Scholar
  22. 22.
    S.S.M. Wong, J.B. French, Nucl. Phys. A 198, 188 (1972)CrossRefADSGoogle Scholar
  23. 23.
    N. Rosenzweig, C.E. Porter, Phys. Rev. 120, 1698 (1960)CrossRefADSGoogle Scholar
  24. 24.
    J.C. Parikh, J. Phys. B 11, 1881 (1978)CrossRefADSGoogle Scholar
  25. 25.
    J.B. French, V.K.B. Kota, A. Pandey, S. Tomsovic, Ann. Phys. (N.Y.) 181, 235 (1988)CrossRefADSGoogle Scholar
  26. 26.
    S. Tomsovic, PhD Thesis, University of Rochester, 1986Google Scholar
  27. 27.
    V. Zelevinsky, B.A. Brown, N. Frazier, M. Horoi, Phys. Rep. 276, 85 (1996)CrossRefMathSciNetADSGoogle Scholar
  28. 28.
    V.V. Flambaum, A.A. Gribankina, G.F. Gribakin, M.G. Kozlov, Phys. Rev. A 50, 267 (1994)CrossRefADSGoogle Scholar
  29. 29.
    A.A. Gribankina, V.V. Flambaum, G.F. Gribakin, Phys. Rev. E 52, 5667 (1995)CrossRefADSGoogle Scholar
  30. 30.
    A. Cummings, G. O'Sullivan, D.M. Heffernan, J. Phys. B 34, 3407 (2001)CrossRefADSGoogle Scholar
  31. 31.
    D. Angom, V.K.B. Kota, Phys. Rev. A 67, 052508 (2003)CrossRefADSGoogle Scholar
  32. 32.
    D. Angom, V.K.B. Kota, Phys. Rev. A 71, 042504 (2005)CrossRefADSGoogle Scholar
  33. 33.
    D. Angom, V.K.B. Kota, in the Proceedings of the 3rd National Conference on Nonlinear systems and Dynamics, Chennai, India, 2006, edited by M. Lakshmanan, R. Sahadevan, http://www.cts.iitkgp.ernet.in/cts_html/ncnsd/paper06/125.pdf
  34. 34.
    V.K.B. Kota, R. Sahu, Phys. Lett. B 429, 1 (1998)CrossRefADSGoogle Scholar
  35. 35.
    V.K.B. Kota, R. Sahu, Phys. Rev. E 66, 037103 (2002)CrossRefADSGoogle Scholar
  36. 36.
    T. Papenbrock, H.A. Weidenmüller, Nucl. Phys. A 757, 422 (2005)CrossRefADSGoogle Scholar
  37. 37.
    M. Feingold, D.M. Leitner, M. Wilkinson, Phys. Rev. Lett. 66, 986 (1991)zbMATHCrossRefMathSciNetADSGoogle Scholar
  38. 38.
    J.B. French, V.K.B. Kota, Phys. Rev. Lett. 51, 2183 (1983)CrossRefMathSciNetADSGoogle Scholar
  39. 39.
    V.K.B. Kota, K. Kar, Pramana-J. Phys. 32, 647 (1989)CrossRefADSGoogle Scholar
  40. 40.
    V.K.B. Kota, R. Sahu, Phys. Rev. E 64, 016219 (2001)CrossRefADSGoogle Scholar
  41. 41.
    J.J. Shen, A. Arima, Y.M. Zhao, N. Yoshinaga, Phys. Rev. C 78, 044305 (2008)CrossRefADSGoogle Scholar
  42. 42.
    N. Yoshinaga, A. Arima, J.J. Shen, Y.M. Zhao, Phys. Rev. C 79, 017301 (2009)CrossRefADSGoogle Scholar
  43. 43.
    A. Stuart, J.K. Ord, Kendall's Advanced Theory of Statistics: Distribution Theory (Oxford University Press, New York, 1987)Google Scholar
  44. 44.
    V.K.B. Kota, M. Vyas, K.B.K. Mayya, Int. J. Mod. Phys. E 17, 318 (2008)CrossRefADSGoogle Scholar
  45. 45.
    V.V. Flambaum, G.F. Gribakin, F.M. Izrailev, Phys. Rev. E 53, 5729 (1996)CrossRefADSGoogle Scholar
  46. 46.
    V.V. Flambaum, F.M. Izrailev, G. Casati, Phys. Rev. E 54, 2136 (1996)CrossRefADSGoogle Scholar
  47. 47.
    Ph. Jacquod, A.D. Stone, Phys. Rev. B 64, 214416 (2001)CrossRefADSGoogle Scholar
  48. 48.
    M. Vyas, V.K.B. Kota, N.D. Chavda, Phys. Rev. E 81, 036212 (2010)CrossRefADSGoogle Scholar
  49. 49.
    J.P. Elliott, Proc. R. Soc. London, Ser. A 245, 128, 562 (1958)Google Scholar
  50. 50.
    A.P. Zuker, L.W. Ndeuna, F. Nowacki, E. Caurier, Phys. Rev. C 64, 021304(R) (2001)ADSGoogle Scholar
  51. 51.
    T.T.S. Kuo, Nucl. Phys. A 103, 71 (1967)CrossRefADSGoogle Scholar
  52. 52.
    V.K.B. Kota, D. Majumdar, Z. Phys. A 351, 365 (1995)CrossRefADSGoogle Scholar
  53. 53.
    V.K.B. Kota, D. Majumdar, R. Haq, R.J. Leclair, Can. J. Phys. 77, 893 (1999)CrossRefADSGoogle Scholar
  54. 54.
    M.S. Bae, T. Otsuka, T. Mizusaki, N. Fukunishi, Phys. Rev. Lett. 69, 2349 (1992)CrossRefADSGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Physical Research LaboratoryAhmedabadIndia

Personalised recommendations