The European Physical Journal A

, Volume 45, Issue 1, pp 131–145 | Cite as

In-target radioactive nuclei production rates with EURISOL single-stage target configuration

  • S. P. ChabodEmail author
  • J. -Ch. David
  • D. Ene
  • D. Ridikas
  • N. Thiollière
Special Article - Tools for Experiment and Theory


We calculate in-target production rates of radioactive nuclei in the case of single-stage spallation targets designed for EURISOL (European Isotope Separation On-Line Radioactive Ion Beam Facility). Using particle generation-transport codes, we estimate the isotopic distributions of the reaction products, in terms of their charge and mass numbers, for 320 configurations of cylindrical targets. For 11 elements of the highest priority (Li, Be, Ne, Mg, Ar, Ni, Ga, Kr, Sn, Hg, Fr) and 23 of their isotopes far from stability, this study helps in deciding which target configuration can be retained or discarded to reach the highest production rates.


Isotopic Distribution Exotic Nucleus Incident Proton Radioactive Nucleus Incident Proton Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    EURISOL design study, available at
  2. 2.
    T. Stora, The EURISOL facility: feasibility study for the 100 kW direct targets, EURISOL internal task note 03-25-2006-0005 (2006).Google Scholar
  3. 3.
    T. Stora, Baseline parameters 05/2005, EURISOL internal task note 03-25-2006-0002 (2006)Google Scholar
  4. 4.
    N. Thiollière, Optimization of $^{6}\mathrm{He}$ production using W or Ta converter surrounded by BeO target assembly, CEA Saclay internal report DAPNIA-06-274 for EURISOL-DS Task 3 (2006)Google Scholar
  5. 5.
    D.B. Pelowitz (Editor), MCNPX user's manual version 2.5.0, LA-CP-05-0369 (2005)Google Scholar
  6. 6.
    J.-Ch. David, Benchmark calculations on residue production within the EURISOL DS project, Part I: thin targets, CEA Saclay internal report DAPNIA-07-59 for EURISOL-DS Task 11 (2007)Google Scholar
  7. 7.
    J.-Ch. David, Benchmark calculations on residue production within the EURISOL DS project, Part II: thick targets, CEA Saclay internal report DAPNIA-07-04 for EURISOL-DS Task 11 (2007)Google Scholar
  8. 8.
    A. Boudard et al., Phys. Rev. C 66, 044615 (2002)CrossRefADSGoogle Scholar
  9. 9.
    J. Benlliure et al., Nucl. Phys. A 628, 458 (1998)CrossRefADSGoogle Scholar
  10. 10.
    A.R. Junghans et al., Nucl. Phys. A 629, 655 (1998)ADSGoogle Scholar
  11. 11.
    S.G. Mashnik, A.J. Sierk, Recent developments of the cascade-exciton model of nuclear reactions, LANL report LA-UR-01-5390 (2001)Google Scholar
  12. 12.
    F. Atchison, Spallation and fission in heavy metal nuclei under medium energy proton bombardment, in Proceedings of the Meeting on Targets for Neutron Beam Spallation Source, June 11--12, 1979, edited by G.S. Bauer, Jul-Conf-34 (Kernforschungsanlage Julich GmbH, 1980)Google Scholar
  13. 13.
    W.B. Wilson, T.R. England, A manual for CINDER'90 version C00D and associated codes and data, LA-UR-00-Draft (2001)Google Scholar
  14. 14.
    John Cornell, The EURISOL report - Feasibility study for the EURopean Isotope-Separation-On-Line radioactive beam facility (Ganil, Caen, 2003) appendix CGoogle Scholar
  15. 15.
    R.D. Page, Selection of key experiments with the associated instrumentation, EURISOL internal task note 10-25-2007-0003 (2007)Google Scholar
  16. 16.
    E. Le Gentil et al., Phys. Rev. Lett. 100, 022701 (2008)CrossRefADSGoogle Scholar
  17. 17.
    T.E. Cocolios et al., Nucl. Instrum. Methods B 266, 4403 (2008)CrossRefADSGoogle Scholar
  18. 18.
    J. Lettry et al., Nucl. Instrum. Methods B 126, 130 (1997)CrossRefADSGoogle Scholar
  19. 19.
    E. Bouquerel, Atomic beam merging and suppression of alkali contaminants in multi body high power targets: design and test of targets and ion-sources prototypes at ISOLDE, PhD Thesis, Paris XI-Orsay, 2009Google Scholar
  20. 20.
  21. 21.
    S. Lukic et al., Nucl. Instrum. Methods A 565, 784 (2006)CrossRefADSGoogle Scholar
  22. 22.
    Internal report CERN-EP/2002-048Google Scholar
  23. 23.
    W. Pohorecki et al., Nucl. Instrum. Methods A 562, 750 (2006)CrossRefADSGoogle Scholar
  24. 24.
    A. Kelic, ABLA07 - Towards a complete description of the decay channels of a nuclear system from spontaneous fission to multifragmentation, in Proceedings of the Joint ICTP-IAEA Advanced Workshop on Model Codes for Spallation Reactions, ICTP Trieste, Italy, 4-8 7February 2008, edited by D. Filges, S. Leray, Y. Yariv, A. Mengoni, A. Stanculescu, G. Mank, IAEA INDC(NDS)-530 (IAEA, 2008) pp. 181--221, arXiv:0906.4193v1 [nucl-th]
  25. 25.
    M.V. Ricciardi et al., Phys. Rev. C 73, 014607 (2006)CrossRefADSGoogle Scholar
  26. 26.
  27. 27.
    S.P. Chabod, Optimization of in-target yields for RIB production, Part I: direct targets, CEA Saclay internal report IRFU-08-21 for EURISOL-DS Task 11 (2007)Google Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • S. P. Chabod
    • 1
    • 2
    Email author
  • J. -Ch. David
    • 1
  • D. Ene
    • 1
  • D. Ridikas
    • 1
  • N. Thiollière
    • 1
    • 3
  1. 1.CEA SaclayIrfu/SPhNGif-sur-YvetteFrance
  2. 2.CNRS/IN2P3, Institut Polytechnique de GrenobleLPSC, Université Joseph Fourier Grenoble 1GrenobleFrance
  3. 3.SUBATECHEMN-IN2P3/CNRS-UniversitéNantesFrance

Personalised recommendations