The European Physical Journal A

, Volume 45, Issue 1, pp 61–68 | Cite as

Nuclear energy density functional from chiral pion-nucleon dynamics: Isovector terms

  • N. KaiserEmail author
Regular Article - Theoretical Physics


We extend a recent calculation of the nuclear energy density functional in the framework of chiral perturbation theory by computing the isovector surface and spin-orbit terms: (\(\vec \nabla \rho _p - \vec \nabla \rho _n \))2 G d(\( \rho\)) + (\(\vec \nabla \rho _p - \vec \nabla \rho _n \)·(\(\vec J_p - \vec J_n \))G so(\( \rho\)) + (\(\vec J_p - \vec J_n \))2 G J(\( \rho\)) pertaining to different proton and neutron densities. Our calculation treats systematically the effects from 1\( \pi\) -exchange, iterated 1\( \pi\) -exchange, and irreducible 2\( \pi\) -exchange with intermediate \( \Delta\) -isobar excitations, including Pauli-blocking corrections up to three-loop order. Using an improved density-matrix expansion, we obtain results for the strength functions G d(\( \rho\)) , G so(\( \rho\)) and G J(\( \rho\)) which are considerably larger than those of phenomenological Skyrme forces. These (parameter-free) predictions for the strength of the isovector surface and spin-orbit terms as provided by the long-range pion-exchange dynamics in the nuclear medium should be examined in nuclear structure calculations at large neutron excess.


Chiral Perturbation Theory Strength Function Neutron Density Nucleon Density Medium Insertion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Bender, P.H. Heenen, P.G. Reinhard, Rev. Mod. Phys. 75, 121 (2003)CrossRefADSGoogle Scholar
  2. 2.
    J.R. Stone, P.G. Reinhard, Prog. Part. Nucl. Phys. 58, 587 (2007)CrossRefADSGoogle Scholar
  3. 3.
    M. Beiner, H. Flocard, N. Van Giai, P. Quentin, Nucl. Phys. A 238, 29 (1975)CrossRefADSGoogle Scholar
  4. 4.
    J. Bartel, P. Quentin, M. Brack, C. Guet, H.B. Hakansson, Nucl. Phys. A 386, 79 (1982)CrossRefADSGoogle Scholar
  5. 5.
    J. Dobaczewski, H. Flocard, J. Treiner, Nucl. Phys. A 422, 103 (1984)CrossRefADSGoogle Scholar
  6. 6.
    E. Chabanat, P. Bonche, P. Haensel, J. Meyer, R. Schaeffer, Nucl. Phys. A 627, 710 (1997)CrossRefADSGoogle Scholar
  7. 7.
    E. Chabanat, P. Bonche, P. Haensel, J. Meyer, R. Schaeffer, Nucl. Phys. A 635, 231 (1998)CrossRefADSGoogle Scholar
  8. 8.
    S. Goriely, M. Samyn, M. Bender, J.M. Pearson, Phys. Rev. C 68, 054325 (2003)CrossRefADSGoogle Scholar
  9. 9.
    M. Samyn, S. Goriely, M. Bender, J.M. Pearson, Phys. Rev. C 70, 044309 (2004)CrossRefADSGoogle Scholar
  10. 10.
    N. Chamel, S. Goriely, J.M. Pearson, Nucl. Phys. A 812, 72 (2008)CrossRefADSGoogle Scholar
  11. 11.
    B.D. Serot, J.D. Walecka, Int. J. Mod. Phys. E 6, 515 (1997) and references thereinCrossRefADSGoogle Scholar
  12. 12.
    P. Ring, Lecture Notes in Physics, Vol. 581 (Springer-Verlag, Berlin, 2001) p. 195 and references thereinGoogle Scholar
  13. 13.
    P. Finelli, N. Kaiser, D. Vretenar, W. Weise, Nucl. Phys. A 770, 1 (2006)CrossRefADSGoogle Scholar
  14. 14.
    T. Lesinski, T. Duguet, K. Bennaceur, J. Meyer, Eur. Phys. J. A 40, 121 (2009)CrossRefADSGoogle Scholar
  15. 15.
    J.E. Drut, R.J. Furnstahl, L. Platter, Prog. Part. Nucl. Phys. 64, 120 (2010)CrossRefADSGoogle Scholar
  16. 16.
    S.K. Bogner, R.J. Furnstahl, L. Platter, Eur. Phys. J. A 39, 219 (2009)CrossRefADSGoogle Scholar
  17. 17.
    S.K. Bogner, R.J. Furnstahl, A. Nogga, A. Schwenk, Nucl. Phys. A 763, 59 (2005)CrossRefADSGoogle Scholar
  18. 18.
    R. Roth, P. Papakonstantinou, N. Paar, H. Hergert, T. Neff, H. Feldmeier, Phys. Rev. C 73, 044312 (2006)CrossRefADSGoogle Scholar
  19. 19.
    J.W. Negele, D. Vautherin, Phys. Rev. C 5, 1472 (1972)CrossRefADSGoogle Scholar
  20. 20.
    B. Gebremariam, S.K. Bogner, T. Duguet, arXiv:0910.4979 [nucl-th]
  21. 21.
    N. Kaiser, W. Weise, Nucl. Phys. A 836, 256 (2010)CrossRefADSGoogle Scholar
  22. 22.
    N. Kaiser, Phys. Rev. C 70, 034307 (2004)CrossRefADSGoogle Scholar
  23. 23.
    O. Plohl, C. Fuchs, Phys. Rev. C 74, 034325 (2006)CrossRefADSGoogle Scholar
  24. 24.
    B. Gebremariam, T. Duguet, S.K. Bogner, arXiv:1003.5210 [nucl-th]
  25. 25.
    N. Kaiser, S. Fritsch, W. Weise, Nucl. Phys. A 724, 47 (2003)CrossRefADSGoogle Scholar
  26. 26.
    N. Kaiser, S. Gerstendörfer, W. Weise, Nucl. Phys. A 637, 395 (1998)CrossRefADSGoogle Scholar
  27. 27.
    N. Kaiser, R. Brockmann, W. Weise, Nucl. Phys. A 625, 758 (1997)CrossRefADSGoogle Scholar
  28. 28.
    J. Fujita, H. Miyawawa, Prog. Theor. Phys. 17, 366 (1957)zbMATHCrossRefADSGoogle Scholar
  29. 29.
    S. Fritsch, N. Kaiser, W. Weise, Nucl. Phys. A 750, 259 (2005)CrossRefADSGoogle Scholar
  30. 30.
    P.G. Reinhart, H. Flocard, Nucl. Phys. A 584, 467 (1995)CrossRefADSGoogle Scholar
  31. 31.
    N. Kaiser, Phys. Rev. C 68, 014323 (2003)CrossRefADSGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Physik Department T39Technische Universität MünchenGarchingGermany

Personalised recommendations