The European Physical Journal A

, Volume 44, Issue 3, pp 499–511

Effect of a sweeping conductive wire on electrons stored in a Penning-like trap between the KATRIN spectrometers

  • M. Beck
  • K. Valerius
  • J. Bonn
  • K. Essig
  • F. Glück
  • H. -W. Ortjohann
  • B. Ostrick
  • E. W. Otten
  • Th. Thümmler
  • M. Zbořil
  • C. Weinheimer
Special Article - Tools for Experiment and Theory

Abstract

The KATRIN experiment is going to search for the mass of the electron antineutrino down to 0.2eV/c2. In order to reach this sensitivity the background rate has to be understood and minimised to 0.01 counts per second. One of the background sources is the unavoidable Penning-like trap for electrons due to the combination of the electric and magnetic fields between the pre- and the main spectrometer at KATRIN. In this article we will show that by sweeping a conducting wire periodically through such a particle trap stored particles can be removed, an ongoing discharge in the trap can be stopped, and the count rate measured with a detector looking at the trap is reduced.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E.W. Otten, C. Weinheimer, Rep. Prog. Phys. 71, 086201 (2008) doi:10.1088/0034-4885/71/8/086201CrossRefADSGoogle Scholar
  2. 2.
    J. Lesgourgues, S. Pastor, Phys. Rep. 429, 307 (2006) doi:10.1103/PhysRevD.79.045026CrossRefADSGoogle Scholar
  3. 3.
    The KATRIN Collaboration (J. Angrik), KATRIN Design Report 2004, FZKA Scientific Report 7090, 2005, available online at http://bibliothek.fzk.de/zb/berichte/FZKA7090.pdf
  4. 4.
    A. Picard et al., Nucl. Instrum. Methods B 63, 345 (1992) doi:10.1016/0168-583x(92)95119-cCrossRefADSGoogle Scholar
  5. 5.
    V.M. Lobashev, P.E. Spivak, Nucl. Instrum. Methods A 240, 305 (1985) doi:10.1016/0168-9002(85)90640-0CrossRefADSGoogle Scholar
  6. 6.
    K. Blaum, Phys. Rep. 425, 1 (2006) doi:10.1016/j.physrep.2005.10.011CrossRefADSGoogle Scholar
  7. 7.
    K. Valerius, Spectrometer-related background processes and their suppression in the , dissertation, Westfälische Wilhelms-Universität Münster, 2009Google Scholar
  8. 8.
    F. Habermehl, Electromagnetic Measurements with the KATRIN Pre-Spectrometer, dissertation, Universität Karlsruhe, 2009Google Scholar
  9. 9.
    T. Tabata, T. Shirai, At. Data Nucl. Data Tables 76, 1 (2000) doi:10.1006/adnd.2000.0835CrossRefADSGoogle Scholar
  10. 10.
    K. Essig, Untersuchungen zur Penningfalle zwi\-sch\-en den Spektrometern des KATRIN-Experiments, Diploma Thesis, Rheinische Friedrich-Wilhelms-Universität Bonn, 2004Google Scholar
  11. 11.
    Th. Thümmler, Entwicklung von Methoden zur Untergrundreduzierung am Mainzer Tritium-Beta-Spektrometer, Diploma Thesis, Johannes Gutenberg-Universität Mainz, 2002Google Scholar
  12. 12.
    B. Flatt, Designstudien für das KATRIN Experiment, Diploma Thesis, Johannes Gutenberg-Universität Mainz, 2001Google Scholar
  13. 13.
    SimIon Version 7.0, Scientific Instruments Services Inc., 1027 Old York Road, Ringoes, New York 08551, USA, http://simion.com
  14. 14.
    J.D. Jackson, Classical Electrodynamics (John Wiley & Sons Inc., 1998)Google Scholar
  15. 15.
    S. Trajmar, D.F. Register, A. Chutjian, Phys. Rep. 97, 219 (1983) doi:10.1016/0370-1573(83)90071-6CrossRefADSGoogle Scholar
  16. 16.
    J.W. Liu, Phys. Rev. A 35, 591 (1987) doi:10.1103/PhysRevA.35.591CrossRefADSGoogle Scholar
  17. 17.
    G.P. Arrighini, F. Biondi, C. Guidotti, Mol. Phys. 41, 1501 (1980)CrossRefADSGoogle Scholar
  18. 18.
    Zhifan Chen, A.Z. Msezane, Phys. Rev. A 51, 3745 (1995) doi:10.1103/PhysRevA.51.3745CrossRefADSGoogle Scholar
  19. 19.
    W. Hwang, Y.-K. Kim, M.E. Rudd, J. Chem. Phys. 104, 2956 (1996)CrossRefADSGoogle Scholar
  20. 20.
    J.W. Liu, Phys. Rev. A 7, 103 (1973) doi:10.1103/PhysRevA.7.103CrossRefADSGoogle Scholar
  21. 21.
    I. Wolff, Entfaltung der Energieverlustfunktion beim KATRIN Experiment, Diploma Thesis, Westfälische Wilhelms-Universität Münster, 2008Google Scholar
  22. 22.
    F. Glück, in preparationGoogle Scholar
  23. 23.
    V.N. Aseev et al., Eur. Phys. J. D 10, 39 (2000) doi:10.1007/s100530050525CrossRefADSGoogle Scholar
  24. 24.
    K. Valerius, M. Beck, H. Arlinghaus, J. Bonn, V.M. Hannen, H. Hein, B. Ostrick, S. Streubel, Ch. Weinheimer, M. Zbořil, New J. Phys. 11, 063018 (2009) doi:10.1088/1367-2630/11/6/063018CrossRefADSGoogle Scholar
  25. 25.
    Seoul Semiconductor Co., Ltd., Specification document for UV LED model series T9B25* (Rev. 1.0) 2006, http://www.socled.com
  26. 26.
    Seoul Semiconductor Co., Ltd., Specification document for UV LED model series T9B26* (Rev. 2.0) 2006, http://www.socled.com
  27. 27.
    K. Valerius, M. Beck, H. Baumeister, J. Bonn, H. Hein, K. Hugenberg, B. Ostrick, M. Zbořil, C. Weinheimer, Prototype of an angular-defined photoelectron calibration source for the KATRIN experiment, in preparationGoogle Scholar
  28. 28.
    K. Hugenberg, M. Beck, S. Bauer, H. Baumeister, J. Bonn, H. Hein, B. Ostrick, S. Rosendahl, S. Streubel, K. Valerius, M. Zbořil, C. Weinheimer, An angular selective photoelectron calibration source for the KATRIN experiment with high angular resolution, in preparationGoogle Scholar
  29. 29.
    M. Beck et al., Nucl. Instrum. Methods A 503, 567 (2003) doi:10.1016/s0168-9002(03)00994-xCrossRefADSGoogle Scholar
  30. 30.
    V.Yu. Kozlov et al., Nucl. Instrum. Methods B 266, 4515 (2008) doi:10.1016/j.nimb.2008.05.150CrossRefADSGoogle Scholar
  31. 31.
    F. Glück et al., Eur. Phys. J. A 23, 135 (2005) doi:10.1140/epja/i2004-10057-1CrossRefADSGoogle Scholar
  32. 32.
    D. Počanić et al., Nucl. Instrum. Methods A 611, 211 (2009) doi:10.1016/j.nima.2009.07.065CrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • M. Beck
    • 1
  • K. Valerius
    • 1
  • J. Bonn
    • 2
  • K. Essig
    • 3
  • F. Glück
    • 4
    • 5
  • H. -W. Ortjohann
    • 1
  • B. Ostrick
    • 1
    • 2
  • E. W. Otten
    • 2
  • Th. Thümmler
    • 3
  • M. Zbořil
    • 1
    • 6
  • C. Weinheimer
    • 1
    • 3
  1. 1.Institut für KernphysikWestfälische Wilhelms-Universität MünsterMünsterGermany
  2. 2.Institut für PhysikJohannes Gutenberg-Universität MainzMainzGermany
  3. 3.Helmholtz-Institut für Strahlen- und KernphysikRheinische Friedrich-Wilhelms-Universität BonnBonnGermany
  4. 4.Institut für Experimentelle KernphysikKarlsruhe Institute of TechnologyMünsterGermany
  5. 5.Research Institute for Particle and Nuclear PhysicsBudapestHungary
  6. 6.Nuclear Physics Institute ASCRŘež near PragueCzech Republic
  7. 7.Physikalisches InstitutFriedrich-Alexander-Universität Erlangen-NürnbergErlangen-NürnbergGermany
  8. 8.Institut für KernphysikKarlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations