Advertisement

The European Physical Journal A

, Volume 44, Issue 2, pp 189–201 | Cite as

Helicity dependence of the \( \gamma\)d \( \rightarrow\) \( \pi\)NN reactions in the \( \Delta\) -resonance region

  • The GDH and A2 Collaborations
  • J. Ahrens
  • S. Altieri
  • J. R. M. Annand
  • H. -J. Arends
  • R. Beck
  • M. A. Blackston
  • C. Bradtke
  • A. Braghieri
  • N. d’Hose
  • H. Dutz
  • A. Fix
  • E. Heid
  • O. Jahn
  • F. Klein
  • R. Kondratiev
  • M. Lang
  • V. Lisin
  • M. Martinez-Fabregate
  • J. C. McGeorge
  • W. Meyer
  • A. Panzeri
  • P. Pedroni
  • T. Pinelli
  • D. Protopopescu
  • G. Reicherz
  • Ch. Rohlof
  • G. Rosner
  • T. Rostomyan
  • D. Ryckbosch
  • M. Schwamb
  • G. Tamas
  • A. Thomas
  • H. R. Weller
Regular Article - Experimental Physics

Abstract.

The helicity dependence of the differential cross-section for the \( \gamma\) d \( \rightarrow\) \( \pi\) NN reactions has been measured for the first time in the \( \Delta\) -resonance region. The measurement was performed with the large-acceptance detector DAPHNE at the tagged photon beam facility of the MAMI accelerator in Mainz. The data show that the main reaction mechanisms for the \( \pi^{{\pm}}_{}\) NN channels are the quasi-free N \( \pi\) processes on one bound nucleon with nuclear dynamics playing a minor role. On the contrary, for the \( \pi^{0}_{}\) np channel nuclear mechanisms involving the reabsorption of the photoproduced \( \pi^{0}_{}\) by the np pair have to be taken into account to reproduce the experimental data.

Keywords

Systematic Uncertainty Deuteron Wave Function Pion Photoproduction Unpolarized Case Scintillator Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Benz et al., Nucl. Phys. B 65, 158 (1973)CrossRefADSGoogle Scholar
  2. 2.
    I. Blomqvist, J. Laget, Nucl. Phys. A 280, 405 (1977)CrossRefADSGoogle Scholar
  3. 3.
    J. Laget, Nucl. Phys. A 296, 388 (1978)CrossRefADSGoogle Scholar
  4. 4.
    J. Laget, Phys. Rep. 69, 1 (1981)CrossRefADSGoogle Scholar
  5. 5.
    A. Fix, H. Arenhövel, Phys. Rev. C 72, 064005 (2005)CrossRefADSGoogle Scholar
  6. 6.
    H. Arenhövel, A. Fix, Phys. Rev. C 72, 064004 (2005)CrossRefADSGoogle Scholar
  7. 7.
    M. Levchuk et al., Phys. Rev. C 74, 014004 (2006)CrossRefADSGoogle Scholar
  8. 8.
    E. Darwish et al., Phys. Rev. C 76, 044005 (2007)CrossRefADSGoogle Scholar
  9. 9.
    D. Drechsel et al., Nucl. Phys. A 570, 580 (1999) http://www.kph.uni-mainz.de/MAID/ Google Scholar
  10. 10.
    D. Drechsel et al., Phys. Rev. D 63, 114010 (2001)CrossRefADSGoogle Scholar
  11. 11.
    R. Arndt et al., Phys. Rev. C 66, 055213 (2002) http://www.gwdac.phys.gwu.edu/ CrossRefADSGoogle Scholar
  12. 12.
    M. Schwamb, Phys. Rep. 485, 109 (2010)CrossRefADSGoogle Scholar
  13. 13.
    M. Schwamb, Few Body Syst. 43, 193 (2008)CrossRefADSGoogle Scholar
  14. 14.
    B. Krusche et al., Eur. Phys. J. A 6, 309 (1999)CrossRefADSGoogle Scholar
  15. 15.
    B. Siodlaczek et al., Eur. Phys. J. A 10, 365 (2001)CrossRefADSGoogle Scholar
  16. 16.
    J. Ahrens et al., Phys. Rev. Lett. 97, 202303 (2006)CrossRefADSGoogle Scholar
  17. 17.
    J. Ahrens et al., Phys. Lett. B 672, 328 (2009)CrossRefADSGoogle Scholar
  18. 18.
    J. Ahrens et al., Phys. Rev. Lett. 84, 5950 (2000)CrossRefADSGoogle Scholar
  19. 19.
    J. Ahrens et al., Phys. Rev. Lett. 87, 022003 (2001)CrossRefADSGoogle Scholar
  20. 20.
    J. Ahrens et al., Phys. Rev. Lett. 88, 232002 (2002)CrossRefADSGoogle Scholar
  21. 21.
    J. Ahrens et al., Eur. Phys. J. A 17, 241 (2003)CrossRefADSGoogle Scholar
  22. 22.
    J. Ahrens et al., Eur. Phys. J. A 21, 323 (2004)CrossRefGoogle Scholar
  23. 23.
    J. Ahrens et al., Eur. Phys. J. A 26, 135 (2005)CrossRefADSGoogle Scholar
  24. 24.
    J. Ahrens et al., Phys. Rev. C 74, 045204 (2006)CrossRefADSGoogle Scholar
  25. 25.
    S. Gerasimov, Sov. J. Nucl. Phys. 2, 430 (1966)Google Scholar
  26. 26.
    S. Drell, A. Hearn, Phys. Rev. Lett. 16, 908 (1966)CrossRefADSGoogle Scholar
  27. 27.
    K. Aulenbacher et al., Nucl. Instrum. Methods A 391, 498 (1997)CrossRefADSGoogle Scholar
  28. 28.
    I. Preobajenski, PhD Thesis, University of Mainz, 2001Google Scholar
  29. 29.
    I. Anthony et al., Nucl. Instrum. Methods A 301, 230 (1991)CrossRefADSGoogle Scholar
  30. 30.
    S. Hall et al., Nucl. Instrum. Methods A 368, 698 (1996)CrossRefADSGoogle Scholar
  31. 31.
    M. MacCormick et al., Phys. Rev. C 53, 41 (1996)CrossRefADSGoogle Scholar
  32. 32.
    C. Bradtke et al., Nucl. Instrum. Methods A 436, 430 (1999)CrossRefADSGoogle Scholar
  33. 33.
    S. Goertz et al., Nucl. Instrum. Methods A 526, 43 (2004)CrossRefADSGoogle Scholar
  34. 34.
    G. Audit et al., Nucl. Instrum. Methods A 301, 473 (1991)CrossRefADSGoogle Scholar
  35. 35.
    M. Martinez-Fabregate, PhD Thesis, University of Mainz, 2007Google Scholar
  36. 36.
    A. Braghieri et al., Nucl. Instrum. Methods A 343, 623 (1994)CrossRefADSGoogle Scholar
  37. 37.
    R. Crawford et al., Nucl. Phys. A 406, 303 (1996)CrossRefADSGoogle Scholar
  38. 38.
    R. Machleidt, K. Holinde, C. Elster, Phys. Rep. 149, 1 (1987)CrossRefGoogle Scholar
  39. 39.
    J. Ahrens et al., Phys. Lett. B 551, 49 (2003)CrossRefADSGoogle Scholar
  40. 40.
    B. Krusche, S. Schadmand, Prog. Part. Nucl. Phys. 51, 399 (2003)CrossRefADSGoogle Scholar
  41. 41.
    M. Levchuk, private communication (2009)Google Scholar
  42. 42.
    E. Oset, H. Toki, W. Weise, Phys. Rep. 83, 281 (1982)CrossRefADSGoogle Scholar
  43. 43.
    B.G. Ritchie et al., Phys. Rev. C 28, 926 (1983)CrossRefADSGoogle Scholar
  44. 44.
    D. Ashery, J. Schiffer, Annu. Rev. Nucl. Sci. 36, 207 (1986)CrossRefADSGoogle Scholar
  45. 45.
    S. Boffi, Electromagnetic Response of Atomic Nuclei (Oxford University Press, 1996)Google Scholar
  46. 46.
    D. Drechsel, S. Kamalov, L. Tiator, Eur. Phys. J. A 34, 69 (2007)CrossRefADSGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • The GDH and A2 Collaborations
  • J. Ahrens
    • 7
  • S. Altieri
    • 9
    • 10
  • J. R. M. Annand
    • 6
  • H. -J. Arends
    • 7
  • R. Beck
    • 7
  • M. A. Blackston
    • 3
  • C. Bradtke
    • 2
  • A. Braghieri
    • 9
  • N. d’Hose
    • 5
  • H. Dutz
    • 2
  • A. Fix
    • 11
  • E. Heid
    • 7
  • O. Jahn
    • 7
  • F. Klein
    • 2
  • R. Kondratiev
    • 8
  • M. Lang
    • 7
  • V. Lisin
    • 8
  • M. Martinez-Fabregate
    • 7
  • J. C. McGeorge
    • 6
  • W. Meyer
    • 1
  • A. Panzeri
    • 9
    • 10
  • P. Pedroni
    • 9
  • T. Pinelli
    • 9
    • 10
  • D. Protopopescu
    • 6
  • G. Reicherz
    • 1
  • Ch. Rohlof
    • 2
  • G. Rosner
    • 6
  • T. Rostomyan
    • 4
    • 9
  • D. Ryckbosch
    • 4
  • M. Schwamb
    • 7
  • G. Tamas
    • 7
  • A. Thomas
    • 7
  • H. R. Weller
    • 3
  1. 1.Insitut für ExperimentalphysikRuhr-Universität BochumBochumGermany
  2. 2.Physikalisches InstitutUniversität BonnBonnGermany
  3. 3.Department of PhysicsDuke UniversityDurhamUSA
  4. 4.Subatomaire en StralingsfysicaUniversiteit GentGentBelgium
  5. 5.CEA SaclayDSM/DAPNIA/SPhNGif-sur-Yvette CedexFrance
  6. 6.Department of Physics and AstronomyUniversity of GlasgowGlasgowUK
  7. 7.Institut für KernphysikUniversität MainzMainzGermany
  8. 8.INRAcademy of ScienceMoscowRussia
  9. 9.INFN, Sezione di PaviaPaviaItaly
  10. 10.Dipartimento di Fisica Nucleare e TeoricaUniversità di PaviaPaviaItaly
  11. 11.Laboratory of Mathematical PhysicsTomsk Polytechnic UniversityTomskRussia

Personalised recommendations