Multi-reflection time-of-flight mass spectrograph for short-lived radioactive ions

  • P. Schury
  • K. Okada
  • S. Shchepunov
  • T. Sonoda
  • A. Takamine
  • M. Wada
  • H. Wollnik
  • Y. Yamazaki
Regular Article - Experimental Physics

Abstract

RIKEN’s new RI-Beam Factory (RIBF) will provide unprecedented access to neutron-rich nuclei of importance to r-process nucleosynthesis. We are constructing an advanced multi-reflection time-of-flight mass spectrograph to perform precision mass measurements of these nuclei. We discuss the device and compare its performance to that of the well-known Penning trap mass spectrometer.

References

  1. 1.
    W.A. Fowler, E.M. Burbidge, G.R. Burbidge, F. Hoyle, Rev. Mod. Phys. 29, 547 (1957).CrossRefADSGoogle Scholar
  2. 2.
    T. Baumann et al., Nature 449, 1022 (2007).CrossRefADSGoogle Scholar
  3. 3.
    G. Audi, A.H. Wapstra, C. Thibault, Nucl. Phys. A 729, 129 (2003).CrossRefADSGoogle Scholar
  4. 4.
    J.R. Nix, P. Moeller, K.-L. Kratz, At. Data Nucl. Data Tables 66, 131 (1991).Google Scholar
  5. 5.
    A. Ozawa et al., Phys. Rev. Lett. 84, 5493 (2000).CrossRefADSGoogle Scholar
  6. 6.
    A. Ansari, Phys. Lett. B 623, 37 (2005).CrossRefADSGoogle Scholar
  7. 7.
    J.R. Terry et al., Phys. Rev. C 77, 014316 (2008).CrossRefADSGoogle Scholar
  8. 8.
    C. Thibault et al., Phys. Rev. C 12, 644 (1975).CrossRefADSGoogle Scholar
  9. 9.
    X.L. Tu et al., Z. Phys. A 337, 361 (1990).Google Scholar
  10. 10.
    H. Savajols, Hyperfine Interact. 132, 243 (2001).CrossRefADSGoogle Scholar
  11. 11.
    D. Bazin et al., Nucl. Instrum. Methods B 204, 629 (2000).CrossRefADSGoogle Scholar
  12. 12.
    M. Wada et al., Nucl. Instrum. Methods B 204, 570 (2003).CrossRefADSGoogle Scholar
  13. 13.
    L. Weissman et al., Nucl. Instrum. Methods A 522, 212 (2004).CrossRefADSGoogle Scholar
  14. 14.
    G. Savard et al., Nucl. Phys. A 626, 353 (1997).CrossRefADSGoogle Scholar
  15. 15.
    J. Äystö, Nucl. Phys. A 693, 477 (2001).CrossRefADSGoogle Scholar
  16. 16.
    G. Sikler et al., Nucl. Instrum. Methods B 204, 482 (2002).CrossRefADSGoogle Scholar
  17. 17.
    R. Ringle et al., Int. J. Mass Spectrom. 251, 300 (2006).CrossRefADSGoogle Scholar
  18. 18.
    V. Kolhinen, T. Eronen, U. Hager, J. Hakala, A. Jokinen, S. Kopecky, S. Rinta-Antila, J. Szerypo, J. Äystö, Nucl. Instrum. Methods A 528, 776 (2004).CrossRefADSGoogle Scholar
  19. 19.
    K. Blaum, Phys. Rep. 425, 1 (2006).CrossRefADSGoogle Scholar
  20. 20.
    Y. Ishida, M. Wada, Y. Matsuo, I. Tanihata, A. Casares, H. Wollnik, Nucl. Instrum. Methods B 219–220, 468 (2004).CrossRefGoogle Scholar
  21. 21.
    A. Takamine et al., Rev. Sci. Instrum. 76, 103503 (2005).CrossRefADSGoogle Scholar
  22. 22.
    H. Wollnik, M. Berz, Nucl. Instrum. Methods A 263, 280 (1988).CrossRefADSGoogle Scholar
  23. 23.
    S. Schwarz, Nucl. Instrum. Methods A 566, 233 (2006).CrossRefADSGoogle Scholar
  24. 24.
    O.B. Tarasov, D. Bazin, Nucl. Instrum. Methods B 266, 4657 (2008).CrossRefADSGoogle Scholar
  25. 25.
    James F. Ziegler, Nucl. Instrum. Methods B 219–220, 1027 (2004).CrossRefGoogle Scholar

Copyright information

© SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • P. Schury
    • 1
  • K. Okada
    • 2
  • S. Shchepunov
    • 3
  • T. Sonoda
    • 1
  • A. Takamine
    • 1
  • M. Wada
    • 1
  • H. Wollnik
    • 4
  • Y. Yamazaki
    • 1
  1. 1.Atomic Physics LaboratoryRIKENSaitamaJapan
  2. 2.Department of PhysicsSophia UniversityTokyoJapan
  3. 3.Shimadzu Research LaboratoryManchesterUK
  4. 4.Physikalisches InstitutJustus-Liebig-Universität GiessenGiessenGermany

Personalised recommendations